# laser_detect_cpp **Repository Path**: meizeidexzh/laser_detect_cpp ## Basic Information - **Project Name**: laser_detect_cpp - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-18 - **Last Updated**: 2021-03-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # yolov3-tiny The Pytorch implementation is [ultralytics/yolov3](https://github.com/ultralytics/yolov3). ## Excute: ``` 1. generate yolov3-tiny.wts from pytorch implementation with yolov3-tiny.cfg and yolov3-tiny.weights, or download .wts from model zoo git clone https://github.com/ultralytics/yolov3.git // download its weights 'yolov3-tiny.pt' or 'yolov3-tiny.weights' // put tensorrtx/yolov3-tiny/gen_wts.py into ultralytics/yolov3 and run python gen_wts.py yolov3-tiny.weights // a file 'yolov3-tiny.wts' will be generated. 2. put yolov3-tiny.wts into tensorrtx/yolov3-tiny, build and run // go to tensorrtx/yolov3-tiny mkdir build cd build cmake .. make sudo ./yolov3-tiny -s // serialize model to plan file i.e. 'yolov3-tiny.engine' sudo ./yolov3-tiny -d ../../yolov3-spp/samples // deserialize plan file and run inference, the images in samples will be processed. 3. check the images generated, as follows. _zidane.jpg and _bus.jpg ```