# cocalc-torch **Repository Path**: microcloud/cocalc-torch ## Basic Information - **Project Name**: cocalc-torch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-11-20 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README cocalc-torch === Docker image based on [cocalc-docker](https://github.com/sagemathinc/cocalc-docker), with CUDA 10 and PyTorch installed. ### What you get - A docker image running Cocalc + PyTorch + CUDA 10 ### Requirements (host) - Ubuntu 18.04 (you can modify the Dockerfile for other OS distributions) - Latest Docker installed - Latest NVidia driver installed - [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) installed - About 20GB disk storage - Experience with Docker ### Usage - Clone the repository and enter it in bash - Run `./build-cocalc-torch.sh` - Edit `create-cocalc.sh`: adjust port mappings AND PROJECTS DIRECTORY - Run `./create-cocalc.sh` - Now you have the container `cocalc`. Do whatever you like, e.g. `docker start cocalc` ### Note - Cocalc does not allow you to access via port 80. However, the port **MUST** be mapped with `-p` to somewhere, because otherwise `EXPOSE 80` will be in effect.