# DeepinDetection **Repository Path**: mikigo/deepindetection ## Basic Information - **Project Name**: DeepinDetection - **Description**: Based on MMDetection, use FasterRCNN, ready to train on Deepin/UOS dataset. - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2024-11-12 - **Last Updated**: 2024-11-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: detection, deepin, fasterrcnn ## README # DeepinDetection Based on MMDetection, use FasterRCNN, ready to train on Deepin/UOS dataset. ## config file [configs/deepin/faster-rcnn_r101_fpn_2x_coco.py](configs/deepin/faster-rcnn_r101_fpn_2x_coco.py) : ```python # _base_ = './faster-rcnn_r50_fpn_2x_coco.py' model = dict( roi_head=dict( bbox_head=dict( num_classes=2 ) ) ) # dataset dataset_type = 'CocoDataset' data_root = 'data/coco/' classes = ( "dde_file_manager_icon", "dde_launcher_icon", ) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, metainfo=dict(classes=classes), ann_file='annotations/train.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, metainfo=dict(classes=classes), ann_file='annotations/val.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/val.json', metric='bbox', format_only=False, backend_args=backend_args) test_evaluator = val_evaluator # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02 / 10, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16 / 8) ``` ## Train ```bash python tools/train.py configs/deepin/faster-rcnn_r101_fpn_2x_coco.py ``` ## Inference ```bash python infer.py ```