# HGCN **Repository Path**: milo7hao/HGCN ## Basic Information - **Project Name**: HGCN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-06 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HGCN HGCN: A Heterogeneous Graph Convolutional Network-Based Deep Learning Model Toward Collective Classification ## Prerequisites - Python 2.7 - TensorFlow 1.14.0 ## Getting Started ### Default Run & Parameters Here, we provide two real-world HIN datasets: CORA and IMDB. Run HGCN training on the CORA dataset: ``` $ python train.py --dataset cora --kernel-size 4 --inception-depth 1 --label-propagation 0 --epochs 30 ``` Run HGCN training on the IMDB dataset: ``` $ python train.py --dataset imdb --kernel-size 2 --inception-depth 1 --label-propagation 0 --epochs 30 ``` ### Training on your own datasets If you want to train HGCN on your own dataset, you should prepare the following four files: - *.adj.npz: The adjacency matrix for each type of edges. - *.feat.label.npz: The one-hot codes of the labels of target-type nodes. Note that, 0 to initialize the features of nontarget-type nodes. - *.label.all: The labels of all target-type nodes. Each line contains one token `