# awesome-graph-classification **Repository Path**: milo7hao/awesome-graph-classification ## Basic Information - **Project Name**: awesome-graph-classification - **Description**: A collection of important graph embedding, classification and representation learning papers with implementations. - **Primary Language**: Unknown - **License**: CC0-1.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-10 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Awesome Graph Classification [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome) [![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) ![GitHub stars](https://img.shields.io/github/stars/benedekrozemberczki/awesome-graph-embedding.svg?style=plastic) ![GitHub forks](https://img.shields.io/github/forks/benedekrozemberczki/awesome-graph-embedding.svg?color=blue&style=plastic) ![License](https://img.shields.io/github/license/benedekrozemberczki/awesome-graph-embedding.svg?color=blue&style=plastic) A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations. Relevant graph classification benchmark datasets are available [[here]](https://github.com/shiruipan/graph_datasets). Similar collections about [community detection](https://github.com/benedekrozemberczki/awesome-community-detection), [classification/regression tree](https://github.com/benedekrozemberczki/awesome-decision-tree-papers), [fraud detection](https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), [Monte Carlo tree search](https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers), and [gradient boosting](https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers) papers with implementations.

##### Contents 1. [Factorization](#factorization) 2. [Spectral and Statistical Fingerprints](#spectral-and-statistical-fingerprints) 3. [Deep Learning](#deep-learning) 4. [Graph Kernels](#graph-kernels) ## Factorization - **Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition (Pattern Recognition 2018)** - Anjan Dutta, Pau Riba, Josep Lladós, Alicia Fornés - [[Paper]](https://arxiv.org/abs/1807.02839) - [[Matlab Reference]](https://github.com/priba/hierarchicalSGE) - **Learning Graph Representation via Frequent Subgraphs (SDM 2018)** - Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, Dinh Phung - [[Paper]](https://epubs.siam.org/doi/10.1137/1.9781611975321.35) - [[Python Reference]](https://github.com/nphdang/GE-FSG) - **Anonymous Walk Embeddings (ICML 2018)** - Sergey Ivanov and Evgeny Burnaev - [[Paper]](https://arxiv.org/pdf/1805.11921.pdf) - [[Python Reference]](https://github.com/nd7141/AWE) - **Graph2vec (MLGWorkshop 2017)** - Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan - [[Paper]](https://arxiv.org/abs/1707.05005) - [[Python High Performance]](https://github.com/benedekrozemberczki/graph2vec) - [[Python Reference]](https://github.com/MLDroid/graph2vec_tf) - **Subgraph2vec (MLGWorkshop 2016)** - Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan - [[Paper]](https://arxiv.org/abs/1606.08928) - [[Python High Performance]](https://github.com/MLDroid/subgraph2vec_gensim) - [[Python Reference]](https://github.com/MLDroid/subgraph2vec_tf) - **Rdf2Vec: RDF Graph Embeddings for Data Mining (ISWC 2016)** - Petar Ristoski and Heiko Paulheim - [[Paper]](https://link.springer.com/chapter/10.1007/978-3-319-46523-4_30) - [[Python Reference]](https://github.com/airobert/RDF2VecAtWebScale) - **Deep Graph Kernels (KDD 2015)** - Pinar Yanardag and S.V.N. Vishwanathan - [[Paper]](https://dl.acm.org/citation.cfm?id=2783417) - [[Python Reference]](https://github.com/pankajk/Deep-Graph-Kernels) ## Spectral and Statistical Fingerprints - **A Simple Yet Effective Baseline for Non-Attribute Graph Classification (ICLR RLPM 2019)** - Chen Cai, Yusu Wang - [[Paper]](https://arxiv.org/abs/1811.03508) - [[Python Reference]](https://github.com/Chen-Cai-OSU/LDP) - **NetLSD (KDD 2018)** - Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Emmanuel Müller - [[Paper]](https://arxiv.org/abs/1805.10712) - [[Python Reference]](https://github.com/xgfs/NetLSD) - **A Simple Baseline Algorithm for Graph Classification (Relational Representation Learning, NIPS 2018)** - Nathan de Lara and Edouard Pineau - [[Paper]](https://arxiv.org/pdf/1810.09155.pdf) - [[Python Reference]](https://github.com/edouardpineau/A-simple-baseline-algorithm-for-graph-classification) - **Multi-Graph Multi-Label Learning Based on Entropy (Entropy NIPS 2018)** - Zixuan Zhu and Yuhai Zhao - [[Paper]](https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning/blob/master/entropy-20-00245.pdf) - [[Python Reference]](https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning) - **Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs (NIPS 2017)** - Saurabh Verma and Zhi-Li Zhang - [[Paper]](https://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf) - [[Python Reference]](https://github.com/vermaMachineLearning/FGSD) - **Joint Structure Feature Exploration and Regularization for Multi-Task Graph Classification (TKDE 2015)** - Shirui Pan, Jia Wu, Xingquan Zhuy, Chengqi Zhang, and Philip S. Yuz - [[Paper]](https://ieeexplore.ieee.org/document/7302040) - [[Java Reference]](https://github.com/shiruipan/MTG) - **NetSimile: A Scalable Approach to Size-Independent Network Similarity (arXiv 2012)** - Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos - [[Paper]](https://arxiv.org/abs/1209.2684) - [[Python]](https://github.com/kristyspatel/Netsimile) ## Deep Learning - **GSSNN: Graph Smoothing Splines Neural Network (AAAI 2020)** - Shichao Zhu, Lewei Zhou, Shirui Pan, Chuan Zhou, Guiying Yan, Bin Wang - [[Paper]](https://shiruipan.github.io/publication/aaai-2020-zhu) - [[Python Reference]](https://github.com/CheriseZhu/GSSNN) - **Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels (NeurIPS 2019)** - Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, Keyulu Xu - [[Paper]](https://arxiv.org/abs/1905.13192) - [[Python Reference]](https://github.com/KangchengHou/gntk) - **Molecule Property Prediction Based on Spatial Graph Embedding (Journal of Cheminformatics Models 2019)** - Xiaofeng Wang, Zhen Li, Mingjian Jiang, Shuang Wang, Shugang Zhang, Zhiqiang Wei - [[Paper]](https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00410) - [[Python Reference]](https://github.com/1128bian/C-SGEN) - **Fast Training of Sparse Graph Neural Networks on Dense Hardware (Arxiv 2019)** - Matej Balog, Bart van Merriënboer, Subhodeep Moitra, Yujia Li, Daniel Tarlow - [[Paper]](https://arxiv.org/abs/1906.11786) - [[Python Reference]](https://github.com/anonymous-authors-iclr2020/fast_training_of_sparse_graph_neural_networks_on_dense_hardware) - **Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling (Arxiv 2019)** - Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, Cesare Alippi - [[Paper]](https://arxiv.org/abs/1910.11436) - [[Python Reference]](https://github.com/danielegrattarola/decimation-pooling) - **Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification (Arxiv 2019)** - Ting Chen, Song Bian, Yizhou Sun - [[Paper]](https://arxiv.org/abs/1905.04579) - [[Python Reference]](https://github.com/Waterpine/vis_network) - **Learning Aligned-Spatial Graph Convolutional Networks for Graph Classification (ECML-PKDD 2019)** - Lu Bai, Yuhang Jiao, Lixin Cui, Edwin R. Hancock - [[Paper]](https://arxiv.org/abs/1904.04238) - [[Python Reference]](https://github.com/baiuoy/ASGCN_ECML-PKDD2019) - **Relational Pooling for Graph Representations (ICML 2019)** - Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, Bruno Ribeiro - [[Paper]](https://arxiv.org/abs/1903.02541) - [[Python Reference]](https://github.com/PurdueMINDS/RelationalPooling) - **Ego-CNN: Distributed, Egocentric Representations of Graphs for Detecting Critical Structure (ICML 2019)** - Ruo-Chun Tzeng, Shan-Hung Wu - [[Paper]](http://proceedings.mlr.press/v97/tzeng19a/tzeng19a.pdf) - [[Python Reference]](https://github.com/rutzeng/EgoCNN) - **Self-Attention Graph Pooling (ICML 2019)** - Junhyun Lee, Inyeop Lee, Jaewoo Kang - [[Paper]](https://arxiv.org/abs/1904.08082) - [[Python Reference]](https://github.com/inyeoplee77/SAGPool) - **Variational Recurrent Neural Networks for Graph Classification (ICLR 2019)** - Edouard Pineau, Nathan de Lara - [[Paper]](https://arxiv.org/abs/1902.02721) - [[Python Reference]](https://github.com/edouardpineau/Variational-Recurrent-Neural-Networks-for-Graph-Classification) - **Crystal Graph Neural Networks for Data Mining in Materials Science (Arxiv 2019)** - Takenori Yamamoto - [[Paper]](https://storage.googleapis.com/rimcs_cgnn/cgnn_matsci_May_27_2019.pdf) - [[Python Reference]](https://github.com/Tony-Y/cgnn) - **Explainability Techniques for Graph Convolutional Networks (ICML 2019 Workshop)** - Federico Baldassarre, Hossein Azizpour - [[Paper]](https://128.84.21.199/pdf/1905.13686.pdf) - [[Python Reference]](https://github.com/gn-exp/gn-exp) - **Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019)** - Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang - [[Paper]](https://arxiv.org/pdf/1904.05003.pdf) - [[Python Reference]](https://github.com/benedekrozemberczki/SEAL-CI) - **Capsule Graph Neural Network (ICLR 2019)** - Zhang Xinyi and Lihui Chen - [[Paper]](https://openreview.net/forum?id=Byl8BnRcYm) - [[Python Reference]](https://github.com/benedekrozemberczki/CapsGNN) - **How Powerful are Graph Neural Networks? (ICLR 2019)** - Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka - [[Paper]](https://arxiv.org/abs/1810.00826) - [[Python Reference]](https://github.com/weihua916/powerful-gnns) - **Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019)** - Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe - [[Paper]](https://arxiv.org/pdf/1810.02244v2.pdf) - [[Python Reference]](https://github.com/k-gnn/k-gnn) - **Capsule Neural Networks for Graph Classification using Explicit Tensorial Graph Representations (Arxiv 2019)** - Marcelo Daniel Gutierrez Mallea, Peter Meltzer, and Peter J Bentley - [[Paper]](https://arxiv.org/pdf/1902.08399v1.pdf) - [[Python Reference]](https://github.com/BraintreeLtd/PatchyCapsules) - **Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction (NIPS 2019)** - Roei Herzig, Moshiko Raboh, Gal Chechik, Jonathan Berant, Amir Globerson - [[Paper]](https://arxiv.org/abs/1802.05451) - [[Python Reference]](https://github.com/shikorab/SceneGraph) - **Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks (The Journal of Physical Chemistry Letters 2018)** - Masashi Tsubaki and Teruyasu Mizoguchi - [[Paper]](https://pubs.acs.org/doi/10.1021/acs.jpclett.8b01837) - [[Python Reference]](https://github.com/masashitsubaki/molecularGNN_3Dstructure) - **Machine Learning for Organic Cage Property Prediction (Chemical Matters 2018)** - Lukas Turcani, Rebecca Greenway, Kim Jelfs - [[Paper]](https://pubs.acs.org/doi/10.1021/acs.chemmater.8b03572) - [[Python Reference]](https://github.com/qyuan7/Graph_Convolutional_Network_for_cages) - **Three-Dimensionally Embedded Graph Convolutional Network for Molecule Interpretation (Arxiv 2018)** - Hyeoncheol Cho and Insung. S. Choi - [[Paper]](https://arxiv.org/abs/1811.09794) - [[Python Reference]](https://github.com/blackmints/3DGCN) - **Learning Graph-Level Representations with Recurrent Neural Networks (Arxiv 2018)** - Yu Jin and Joseph F. JaJa - [[Paper]](https://arxiv.org/pdf/1805.07683v4.pdf) - [[Python Reference]](https://github.com/yuj-umd/graphRNN) - **Graph Capsule Convolutional Neural Networks (ICML 2018)** - Saurabh Verma and Zhi-Li Zhang - [[Paper]](https://arxiv.org/abs/1805.08090) - [[Python Reference]](https://github.com/vermaMachineLearning/Graph-Capsule-CNN-Networks) - **Graph Classification Using Structural Attention (KDD 2018)** - John Boaz Lee, Ryan Rossi, and Xiangnan Kong - [[Paper]](http://ryanrossi.com/pubs/KDD18-graph-attention-model.pdf) - [[Python Pytorch Reference]](https://github.com/benedekrozemberczki/GAM) - **Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation (NIPS 2018)** - Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec - [[Paper]](https://arxiv.org/abs/1806.02473) - [[Python Reference]](https://github.com/bowenliu16/rl_graph_generation) - **Hierarchical Graph Representation Learning with Differentiable Pooling (NIPS 2018)** - Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton and Jure Leskovec - [[Paper]](http://papers.nips.cc/paper/7729-hierarchical-graph-representation-learning-with-differentiable-pooling.pdf) - [[Python Reference]](https://github.com/rusty1s/pytorch_geometric) - **Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing (ICML 2018)** - Davide Bacciu, Federico Errica, and Alessio Micheli - [[Paper]](https://arxiv.org/pdf/1805.10636.pdf) - [[Python Reference]](https://github.com/diningphil/CGMM) - **MolGAN: An Implicit Generative Model for Small Molecular Graphs (ICML 2018)** - Nicola De Cao and Thomas Kipf - [[Paper]](https://arxiv.org/pdf/1805.11973.pdf) - [[Python Reference]](https://github.com/nicola-decao/MolGAN) - **Deeply Learning Molecular Structure-Property Relationships Using Graph Attention Neural Network (2018)** - Seongok Ryu, Jaechang Lim, and Woo Youn Kim - [[Paper]](https://arxiv.org/abs/1805.10988) - [[Python Reference]](https://github.com/SeongokRyu/Molecular-GAT) - **Compound-Protein Interaction Prediction with End-to-end Learning of Neural Networks for Graphs and Sequences (Bioinformatics 2018)** - Masashi Tsubaki, Kentaro Tomii, and Jun Sese - [[Paper]](https://academic.oup.com/bioinformatics/article/35/2/309/5050020) - [[Python Reference]](https://github.com/masashitsubaki/CPI_prediction) - [[Python Reference]](https://github.com/masashitsubaki/GNN_molecules) - [[Python Alternative ]](https://github.com/xnuohz/GCNDTI) - **Learning Graph Distances with Message Passing Neural Networks (ICPR 2018)** - Pau Riba, Andreas Fischer, Josep Llados, and Alicia Fornes - [[Paper]](https://ieeexplore.ieee.org/abstract/document/8545310) - [[Python Reference]](https://github.com/priba/siamese_ged) - **Edge Attention-based Multi-Relational Graph Convolutional Networks (2018)** - Chao Shang, Qinqing Liu, Ko-Shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi and Jinbo Bi - [[Paper]](https://arxiv.org/abs/1802.04944v1) - [[Python Reference]](https://github.com/Luckick/EAGCN) - **Commonsense Knowledge Aware Conversation Generation with Graph Attention (IJCAI-ECAI 2018)** - Hao Zhou, Tom Yang, Minlie Huang, Haizhou Zhao, Jingfang Xu and Xiaoyan Zhu - [[Paper]](http://coai.cs.tsinghua.edu.cn/hml/media/files/2018_commonsense_ZhouHao_3_TYVQ7Iq.pdf) - [[Python Reference]](https://github.com/tuxchow/ccm) - **Residual Gated Graph ConvNets (ICLR 2018)** - Xavier Bresson and Thomas Laurent - [[Paper]](https://arxiv.org/pdf/1711.07553v2.pdf) - [[Python Pytorch Reference]](https://github.com/xbresson/spatial_graph_convnets) - **An End-to-End Deep Learning Architecture for Graph Classification (AAAI 2018)** - Muhan Zhang, Zhicheng Cui, Marion Neumann and Yixin Chen - [[Paper]](https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf) - [[Python Tensorflow Reference]](https://github.com/muhanzhang/DGCNN) - [[Python Pytorch Reference]](https://github.com/muhanzhang/pytorch_DGCNN) - [[MATLAB Reference]](https://github.com/muhanzhang/DGCNN) - [[Python Alternative]](https://github.com/leftthomas/DGCNN) - [[Python Alternative]](https://github.com/hitlic/DGCNN-tensorflow) - **SGR: Self-Supervised Spectral Graph Representation Learning (KDD DLDay 2018)** - Anton Tsitsulin, Davide Mottin, Panagiotis Karra, Alex Bronstein and Emmanueal Müller - [[Paper]](https://arxiv.org/abs/1807.02839) - [[Python Reference]](http://mott.in/publications/others/sgr/) - **Deep Learning with Topological Signatures (NIPS 2017)** - Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl - [[paper]](https://arxiv.org/abs/1707.04041) - [[Python Reference]](https://github.com/c-hofer/nips2017) - **Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs (CVPR 2017)** - Martin Simonovsky and Nikos Komodakis - [[paper]](https://arxiv.org/pdf/1704.02901v3.pdf) - [[Python Reference]](https://github.com/mys007/ecc) - **Deriving Neural Architectures from Sequence and Graph Kernels (ICML 2017)** - Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola - [[Paper]](https://arxiv.org/abs/1705.09037) - [[Python Reference]](https://github.com/taolei87/icml17_knn) - **Protein Interface Prediction using Graph Convolutional Networks (NIPS 2017)** - Alex Fout, Jonathon Byrd, Basir Shariat and Asa Ben-Hur - [[Paper]](https://papers.nips.cc/paper/7231-protein-interface-prediction-using-graph-convolutional-networks) - [[Python Reference]](https://github.com/fouticus/pipgcn) - **Graph Classification with 2D Convolutional Neural Networks (2017)** - Antoine J.-P. Tixier, Giannis Nikolentzos, Polykarpos Meladianos and Michalis Vazirgiannis - [[Paper]](https://arxiv.org/abs/1708.02218) - [[Python Reference]](https://github.com/Tixierae/graph_2D_CNN) - **CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters (IEEE TSP 2017)** - Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein - [[Paper]](https://arxiv.org/pdf/1705.07664v2.pdf) - [[Python Reference]](https://github.com/fmonti/CayleyNet) - **Semi-Supervised Learning of Hierarchical Representations of Molecules Using Neural Message Passing (2017)** - Hai Nguyen, Shin-ichi Maeda, Kenta Oono - [[Paper]](https://arxiv.org/pdf/1711.10168.pdf) - [[Python Reference]](https://github.com/pfnet-research/hierarchical-molecular-learning) - **Kernel Graph Convolutional Neural Networks (2017)** - Giannis Nikolentzos, Polykarpos Meladianos, Antoine Jean-Pierre Tixier, Konstantinos Skianis, Michalis Vazirgiannis - [[Paper]](https://arxiv.org/pdf/1710.10689.pdf) - [[Python Reference]](https://github.com/giannisnik/cnn-graph-classification) - **Deep Topology Classification: A New Approach For Massive Graph Classification (IEEE Big Data 2016)** - Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, Andrew Stephen McGough - [[Paper]](https://ieeexplore.ieee.org/document/7840988/) - [[Python Reference]](https://github.com/sbonner0/DeepTopologyClassification) - **Learning Convolutional Neural Networks for Graphs (ICML 2016)** - Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov - [[Paper]](https://arxiv.org/abs/1605.05273) - [[Python Reference]](https://github.com/tvayer/PSCN) - **Gated Graph Sequence Neural Networks (ICLR 2016)** - Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel - [[Paper]](https://arxiv.org/abs/1511.05493) - [[Python TensorFlow]](https://github.com/bdqnghi/ggnn.tensorflow) - [[Python PyTorch]](https://github.com/JamesChuanggg/ggnn.pytorch) - [[Python Reference]](https://github.com/YunjaeChoi/ggnnmols) - **Convolutional Networks on Graphs for Learning Molecular Fingerprints (NIPS 2015)** - David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams - [[Paper]](https://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf) - [[Python Reference]](https://github.com/fllinares/neural_fingerprints_tf) - [[Python Reference]](https://github.com/jacklin18/neural-fingerprint-in-GNN) - [[Python Reference]](https://github.com/HIPS/neural-fingerprint) - [[Python Reference]](https://github.com/debbiemarkslab/neural-fingerprint-theano) ## Graph Kernels - **A Persistent Weisfeiler–Lehman Procedure for Graph Classification (ICML 2019)** - Sebastian Rieck, Christian Bock, and Karsten Borgwardt - [[Paper]](http://proceedings.mlr.press/v97/rieck19a/rieck19a.pdf) - [[Python Reference]](https://github.com/BorgwardtLab/P-WL) - **Message Passing Graph Kernels (2018)** - Giannis Nikolentzos, Michalis Vazirgiannis - [[Paper]](https://arxiv.org/pdf/1808.02510.pdf) - [[Python Reference]](https://github.com/giannisnik/message_passing_graph_kernels) - **Matching Node Embeddings for Graph Similarity (AAAI 2017)** - Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis - [[Paper]](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14494) - **Global Weisfeiler-Lehman Graph Kernels (2017)** - Christopher Morris, Kristian Kersting and Petra Mutzel - [[Paper]](https://arxiv.org/pdf/1703.02379.pdf) - [[C++ Reference]](https://github.com/chrsmrrs/glocalwl) - **On Valid Optimal Assignment Kernels and Applications to Graph Classification (2016)** - Nils Kriege, Pierre-Louis Giscard, Richard Wilson - [[Paper]](https://arxiv.org/pdf/1606.01141.pdf) - [[Java Reference]](https://github.com/nlskrg/optimal_assignment_kernels) - **Efficient Comparison of Massive Graphs Through The Use Of ‘Graph Fingerprints’ (MLGWorkshop 2016)** - Stephen Bonner, John Brennan, and A. Stephen McGough - [[Paper]](http://dro.dur.ac.uk/19773/1/19773.pdf?DDD10+lzdh59+d700tmt) - [[python Reference]](https://github.com/sbonner0/GraphFingerprintComparison) - **The Multiscale Laplacian Graph Kernel (NIPS 2016)** - Risi Kondor and Horace Pan - [[Paper]](https://arxiv.org/abs/1603.06186) - [[C++ Reference]](https://github.com/horacepan/MLGkernel) - **Faster Kernels for Graphs with Continuous Attributes (ICDM 2016)** - Christopher Morris, Nils M. Kriege, Kristian Kersting and Petra Mutzel - [[Paper]](https://arxiv.org/abs/1610.00064) - [[Python Reference]](https://github.com/chrsmrrs/hashgraphkernel) - **Propagation Kernels: Efficient Graph Kernels From Propagated Information (Machine Learning 2016)** - Neumann, Marion and Garnett, Roman and Bauckhage, Christian and Kersting, Kristian - [[Paper]](https://link.springer.com/article/10.1007/s10994-015-5517-9) - [[Matlab Reference]](https://github.com/marionmari/propagation_kernels) - **Halting Random Walk Kernels (NIPS 2015)** - Mahito Sugiyama and Karsten M. Borgward - [[Paper]](https://pdfs.semanticscholar.org/79ba/8bcfbf9496834fdc22a1f7c96d26d776cd6c.pdf) - [[C++ Reference]](https://github.com/BorgwardtLab/graph-kernels) - **A Graph Kernel Based on the Jensen-Shannon Representation Alignment (IJCAI 2015)** - Lu Bai, Zhihong Zhang, Chaoyan Wang, Xiao Bai, Edwin R. Hancock - [[Paper]](http://ijcai.org/Proceedings/15/Papers/468.pdf) - [[Matlab reference]](https://github.com/baiuoy/Matlab-code-JS-alignment-kernel-IJCAI-2015) - **An Aligned Subtree Kernel for Weighted Graphs (ICML 2015)** - Lu Bai, Luca Rossi, Zhihong Zhang, Edwin R. Hancock - [[Paper]](http://proceedings.mlr.press/v37/bai15.pdf) - **Scalable Kernels for Graphs with Continuous Attributes (NIPS 2013)** - Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne and Karsten Borgwardt - [[Paper]](https://papers.nips.cc/paper/5155-scalable-kernels-for-graphs-with-continuous-attributes.pdf) - **Subgraph Matching Kernels for Attributed Graphs (ICML 2012)** - Nils Kriege and Petra Mutzel - [[Paper]](https://arxiv.org/abs/1206.6483) - [[Python Reference]](https://github.com/mockingbird2/GraphKernelBenchmark) - **Nested Subtree Hash Kernels for Large-Scale Graph Classification over Streams (ICDM 2012)** - Bin Li, Xingquan Zhu, Lianhua Chi, Chengqi Zhang - [[Paper]](https://ieeexplore.ieee.org/document/6413884/) - [[Python Reference]](https://github.com/benedekrozemberczki/NestedSubtreeHash) - **Weisfeiler-Lehman Graph Kernels (JMLR 2011)** - Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt - [[Paper]](http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - [[Python Reference]](https://github.com/deeplego/wl-graph-kernels) - [[C++ Reference]](https://github.com/BorgwardtLab/graph-kernels) - **Two New Graphs Kernels in Chemoinformatics (Pattern Recognition Letters 2012)** - Benoit Gaüzère, LucBrun, and Didier Villemin - [[Paper]](https://www.sciencedirect.com/science/article/abs/pii/S016786551200102X) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - **Fast Neighborhood Subgraph Pairwise Distance Kernel (ICML 2010)** - Fabrizio Costa and Kurt De Grave - [[Paper]](https://icml.cc/Conferences/2010/papers/347.pdf) - [[C++ Reference]](www.bioinf.uni-freiburg.de/~costa/EDeNcpp.tgz) - [[Python Reference]](https://github.com/fabriziocosta/EDeN) - **Graph Kernels (JMLR 2010)** - S.V.N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, Karsten M. Borgwardt; - [[Paper]](http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - **A Linear-time Graph Kernel (ICDM 2009)** - Shohei Hido and Hisashi Kashima - [[Paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5360243) - [[Python Reference]](https://github.com/hgascon/adagio) - **Weisfeiler-Lehman Subtree Kernels (NIPS 2009)** - Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt - [[Paper]](http://papers.nips.cc/paper/3813-fast-subtree-kernels-on-graphs.pdf) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - [[Python Reference]](https://github.com/deeplego/wl-graph-kernels) - [[C++ Reference]](https://github.com/BorgwardtLab/graph-kernels) - **Kernel on Bag of Paths For Measuring Similarity of Shapes (InESANN 2007)** - Frederic Suard, Alain Rakotomamonjy, and Abdelaziz Bensrhair - [[Paper]](https://pdfs.semanticscholar.org/149a/858889e8c3a54ee55b21511a7f56f5e9650b.pdf) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - **Fast Computation of Graph Kernels (NIPS 2006)** - S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph - [[Paper]](http://www.dbs.ifi.lmu.de/Publikationen/Papers/VisBorSch06.pdf) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - [[C++ Reference]](https://github.com/BorgwardtLab/graph-kernels) - **Shortest-Path Kernels on Graphs (ICDM 2005)** - Karsten M. Borgwardt and Hans-Peter Kriegel - [[Paper]](https://www.ethz.ch/content/dam/ethz/special-interest/bsse/borgwardt-lab/documents/papers/BorKri05.pdf) - [[C++ Reference]](https://github.com/KitwareMedical/ITKTubeTK) - **Graph Kernels for Chemical Informatics (Neural Networks 2005)** - Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi - [[Paper]](https://www.sciencedirect.com/science/article/pii/S0893608005001693) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - **Cyclic Pattern Kernels For Predictive Graph Mining (KDD 2004)** - Tamás Horváth, Thomas Gärtner, and Stefan Wrobel - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.6158&rep=rep1&type=pdf) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - **Extensions of Marginalized Graph Kernels (ICML 2004)** - Pierre Mahe, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert - [[Paper]](http://members.cbio.mines-paristech.fr/~jvert/publi/04icml/icmlMod.pdf) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - **Extensions of Marginalized Graph Kernels (ICML 2004)** - Pierre Mahe , Nobuhisa Ueda , Tatsuya Akutsu , Jean-Luc Perret , Jean-Philippe Vert - [[Paper]](http://members.cbio.mines-paristech.fr/~jvert/publi/04icml/icmlMod.pdf) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - **Marginalized Kernels Between Labeled Graphs (ICML 2003)** - Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi - [[Paper]](https://pdfs.semanticscholar.org/2dfd/92c808487049ab4c9b45db77e9055b9da5a2.pdf) - [[Python Reference]](https://github.com/jajupmochi/py-graph) - **On Graph Kernels: Hardness Results and Efficient Alternatives (Learning Theory and Kernel Machines 2003)** - Thomas Gärtner, Peter Flach, and Stefan Wrobel - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.8681&rep=rep1&type=pdf) - [[Python Reference]](https://github.com/jajupmochi/py-graph)