# deep_gcns **Repository Path**: milo7hao/deep_gcns ## Basic Information - **Project Name**: deep_gcns - **Description**: Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?" ICCV2019 Oral https://deepgcns.org - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-10 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly residual/dense connections and dilated convolutions, and adapt them to GCN architectures. Through extensive experiments, we show the positive effect of these deep GCN frameworks. [[Project]](https://sites.google.com/view/deep-gcns) [[Paper]](https://arxiv.org/abs/1904.03751) [[Slides]](https://docs.google.com/presentation/d/1L82wWymMnHyYJk3xUKvteEWD5fX0jVRbCbI65Cxxku0/edit?usp=sharing) [[Tensorflow Code]](https://github.com/lightaime/deep_gcns) [[Pytorch Code]](https://github.com/lightaime/deep_gcns_torch)
## Overview We do extensive experiments to show how different components (#Layers, #Filters, #Nearest Neighbors, Dilation, etc.) effect `DeepGCNs`. We also provide ablation studies on different type of Deep GCNs (MRGCN, EdgeConv, GraphSage and GIN).
Further information and details please contact [Guohao Li](https://ghli.org) and [Matthias Müller](https://matthias.pw/). ## Requirements * [TensorFlow 1.12.0](https://www.tensorflow.org/) * [h5py](https://www.h5py.org/) * [vtk](https://vtk.org/) (only needed for visualization) * [jupyter notebook](https://jupyter.org/) (only needed for visualization) ## Conda Environment In order to setup a conda environment with all neccessary dependencies run, ``` conda env create -f environment.yml ``` ## Getting Started You will find detailed instructions how to use our code for semantic segmentation of 3D point clouds, in the folder [sem_seg](sem_seg/). Currently, we provide the following: * Conda environment * Setup of S3DIS Dataset * Training code * Evaluation code * Several pretrained models * Visualization code ## Citation Please cite our paper if you find anything helpful, ``` @InProceedings{li2019deepgcns, title={DeepGCNs: Can GCNs Go as Deep as CNNs?}, author={Guohao Li and Matthias Müller and Ali Thabet and Bernard Ghanem}, booktitle={The IEEE International Conference on Computer Vision (ICCV)}, year={2019} } ``` ## License MIT License ## Acknowledgement This code is heavily borrowed from [PointNet](https://github.com/charlesq34/pointnet) and [EdgeConv](https://github.com/WangYueFt/dgcnn). We would also like to thank [3d-semantic-segmentation](https://github.com/VisualComputingInstitute/3d-semantic-segmentation) for the visualization code.