# pedestrian-attribute-recognition-with-GCN **Repository Path**: milo7hao/pedestrian-attribute-recognition-with-GCN ## Basic Information - **Project Name**: pedestrian-attribute-recognition-with-GCN - **Description**: Pytorch implementation of pedestrian attribute recognition with graph convolutional network - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-08-10 - **Last Updated**: 2021-03-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # pedestrian-attribute-recognition-with-GCN ## Preparation **Prerequisite: Python 3.6 and torch 1.1.0 and tqdm** **Download RAP(v2) dataset and annotation then put in dataset directory** ## Train the model ( If you simply want to run the demo code without further modification, you might skip this step by downloading the weight file from [Baidu Yun](https://pan.baidu.com/s/1m4Na3AFtZrl5i1jsEJD8qQ) with password "5z1j" and put the model_best.pth.tar into directory /checkpoint/ then run
python demo.py ) ``` python transform_rap2.py (transform data) python glove.py (word2vec) python adj.py (Adjacency matrix) python train.py (weight file will locate in checkpoint directory) ```
## Methodology ![image](https://github.com/2014gaokao/pedestrian-attribute-recognition-with-GCN/blob/master/image/%E7%BB%98%E5%9B%BE1.jpg) ## Superiority | method | mA | accuracy | precision | recall | F1 | |:-----:|---|---|---|---|---| |ACN|69.66|62.61|80.12|72.26|75.98| |DeepMar|73.79| 62.02| 74.92| 76.21 |75.56| |HP-Net|76.12 |65.39 |77.33 |78.79 |78.05| |JRL|77.81| -| 78.11| 78.98| 78.58| |VeSPa|77.70 |67.35 |79.51| 79.67 |79.59| |Ours|75.97 |**68.99** |**81.48** |**79.97** |**80.72**|