# pedestrian-attribute-recognition-with-GCN
**Repository Path**: milo7hao/pedestrian-attribute-recognition-with-GCN
## Basic Information
- **Project Name**: pedestrian-attribute-recognition-with-GCN
- **Description**: Pytorch implementation of pedestrian attribute recognition with graph convolutional network
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 0
- **Created**: 2020-08-10
- **Last Updated**: 2021-03-16
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# pedestrian-attribute-recognition-with-GCN
## Preparation
**Prerequisite: Python 3.6 and torch 1.1.0 and tqdm**
**Download RAP(v2) dataset and annotation then put in dataset directory**
## Train the model
( If you simply want to run the demo code without further modification, you might skip this step by downloading the weight file from
[Baidu Yun](https://pan.baidu.com/s/1m4Na3AFtZrl5i1jsEJD8qQ) with password "5z1j" and put the model_best.pth.tar into directory /checkpoint/ then run
python demo.py )
```
python transform_rap2.py (transform data)
python glove.py (word2vec)
python adj.py (Adjacency matrix)
python train.py (weight file will locate in checkpoint directory)
```
## Methodology

## Superiority
| method | mA | accuracy | precision | recall | F1 |
|:-----:|---|---|---|---|---|
|ACN|69.66|62.61|80.12|72.26|75.98|
|DeepMar|73.79| 62.02| 74.92| 76.21 |75.56|
|HP-Net|76.12 |65.39 |77.33 |78.79 |78.05|
|JRL|77.81| -| 78.11| 78.98| 78.58|
|VeSPa|77.70 |67.35 |79.51| 79.67 |79.59|
|Ours|75.97 |**68.99** |**81.48** |**79.97** |**80.72**|