302 Star 1.2K Fork 507

MindSpore / docs

Create your Gitee Account
Explore and code with more than 8 million developers,Free private repositories !:)
Sign up
Clone or Download
linear_regression.py 1.60 KB
Copy Edit Web IDE Raw Blame History
"""Linear Regression Tutorial
This sample code is applicable to CPU, GPU and Ascend.
import numpy as np
from mindspore import dataset as ds
from mindspore.common.initializer import Normal
from mindspore import nn, Model, context
from mindspore.train.callback import LossMonitor
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
def get_data(num, w=2.0, b=3.0):
for _ in range(num):
x = np.random.uniform(-10.0, 10.0)
noise = np.random.normal(0, 1)
y = x * w + b + noise
yield np.array([x]).astype(np.float32), np.array([y]).astype(np.float32)
def create_dataset(num_data, batch_size=16, repeat_size=1):
input_data = ds.GeneratorDataset(list(get_data(num_data)), column_names=['data', 'label'])
input_data = input_data.batch(batch_size)
input_data = input_data.repeat(repeat_size)
return input_data
class LinearNet(nn.Cell):
def __init__(self):
super(LinearNet, self).__init__()
self.fc = nn.Dense(1, 1, Normal(0.02), Normal(0.02))
def construct(self, x):
x = self.fc(x)
return x
if __name__ == "__main__":
data_number = 1600
batch_number = 16
repeat_number = 1
lr = 0.005
momentum = 0.9
net = LinearNet()
net_loss = nn.loss.MSELoss()
opt = nn.Momentum(net.trainable_params(), lr, momentum)
model = Model(net, net_loss, opt)
ds_train = create_dataset(data_number, batch_size=batch_number, repeat_size=repeat_number)
model.train(1, ds_train, callbacks=LossMonitor(), dataset_sink_mode=False)
for param in net.trainable_params():
print(param, param.asnumpy())