336 Star 1.5K Fork 826

MindSpore / docs

Create your Gitee Account
Explore and code with more than 8 million developers,Free private repositories !:)
Sign up
Clone or Download
lenet.py 8.98 KB
Copy Edit Web IDE Raw Blame History
leiyuning authored 2020-03-27 22:47 . initial version
# Copyright 2020 Huawei Technologies Co., Ltd
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Lenet Tutorial"""
import os
import urllib.request
from urllib.parse import urlparse
import gzip
import argparse
import mindspore.dataset as ds
import mindspore.nn as nn
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train import Model
import mindspore.ops.operations as P
from mindspore.common.initializer import TruncatedNormal
import mindspore.dataset.transforms.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.transforms.vision import Inter
from mindspore.nn.metrics import Accuracy
from mindspore.common import dtype as mstype
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
def unzipfile(gzip_path):
"""unzip dataset file
gzip_path: dataset file path
open_file = open(gzip_path.replace('.gz',''), 'wb')
gz_file = gzip.GzipFile(gzip_path)
def download_dataset():
"""Download the dataset from http://yann.lecun.com/exdb/mnist/."""
print("******Downloading the MNIST dataset******")
train_path = "./MNIST_Data/train/"
test_path = "./MNIST_Data/test/"
train_path_check = os.path.exists(train_path)
test_path_check = os.path.exists(test_path)
if train_path_check == False and test_path_check ==False:
train_url = {"http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz", "http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz"}
test_url = {"http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz", "http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz"}
for url in train_url:
url_parse = urlparse(url)
# split the file name from url
file_name = os.path.join(train_path,url_parse.path.split('/')[-1])
if not os.path.exists(file_name.replace('.gz','')):
file = urllib.request.urlretrieve(url, file_name)
for url in test_url:
url_parse = urlparse(url)
# split the file name from url
file_name = os.path.join(test_path,url_parse.path.split('/')[-1])
if not os.path.exists(file_name.replace('.gz','')):
file = urllib.request.urlretrieve(url, file_name)
def create_dataset(data_path, batch_size=32, repeat_size=1,
""" create dataset for train or test
data_path: Data path
batch_size: The number of data records in each group
repeat_size: The number of replicated data records
num_parallel_workers: The number of parallel workers
# define dataset
mnist_ds = ds.MnistDataset(data_path)
# define operation parameters
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Resize images to (32, 32)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) # normalize images
rescale_op = CV.Rescale(rescale, shift) # rescale images
hwc2chw_op = CV.HWC2CHW() # change shape from (height, width, channel) to (channel, height, width) to fit network.
type_cast_op = C.TypeCast(mstype.int32) # change data type of label to int32 to fit network
# apply map operations on images
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
# apply DatasetOps
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""Conv layer weight initial."""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""Fc layer weight initial."""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""Weight initial."""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
"""Lenet network structure."""
# define the operator required
def __init__(self):
super(LeNet5, self).__init__()
self.batch_size = 32
self.conv1 = conv(1, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, 10)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.reshape = P.Reshape()
# use the preceding operators to construct networks
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.reshape(x, (self.batch_size, -1))
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
def train_net(args, model, epoch_size, mnist_path, repeat_size, ckpoint_cb):
"""Define the training method."""
print("============== Starting Training ==============")
# load training dataset
ds_train = create_dataset(os.path.join(mnist_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=False)
def test_net(args, network, model, mnist_path):
"""Define the evaluation method."""
print("============== Starting Testing ==============")
# load the saved model for evaluation
param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt")
# load parameter to the network
load_param_into_net(network, param_dict)
# load testing dataset
ds_eval = create_dataset(os.path.join(mnist_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("============== Accuracy:{} ==============".format(acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
help='device where the code will be implemented (default: Ascend)')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target,
# download mnist dataset
# learning rate setting
lr = 0.01
momentum = 0.9
epoch_size = 1
mnist_path = "./MNIST_Data"
# define the loss function
net_loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
repeat_size = epoch_size
# create the network
network = LeNet5()
# define the optimizer
net_opt = nn.Momentum(network.trainable_params(), lr, momentum)
config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10)
# save the network model and parameters for subsequence fine-tuning
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
# group layers into an object with training and evaluation features
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
train_net(args, model, epoch_size, mnist_path, repeat_size, ckpoint_cb)
test_net(args, network, model, mnist_path)


E71a60c3 8189591 Df7b7c6b 8189591