Fetch the repository succeeded.
# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
train
"""
import os
import datetime
import time
import argparse
import numpy as np
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor, context
from mindspore import dtype as mstype
from mindspore import save_checkpoint, jit, data_sink
from mindspore.common import set_seed
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindflow.core import get_warmup_cosine_annealing_lr
from mindflow.pde import SteadyFlowWithLoss
from mindflow.core import WaveletTransformLoss
from mindflow.cell import ViT
from mindflow.utils import load_yaml_config, print_log, log_config, log_timer
from src import AirfoilDataset, plot_u_and_cp, get_ckpt_summary_dir, plot_u_v_p, calculate_test_error
set_seed(0)
np.random.seed(0)
def parse_args():
'''Parse input args'''
parser = argparse.ArgumentParser(
description='Airfoil 2D_steady Simulation')
parser.add_argument("--mode", type=str, default="GRAPH", choices=["GRAPH", "PYNATIVE"],
help="Support context mode: 'GRAPH', 'PYNATIVE'")
parser.add_argument('--train_mode', type=str, default='train', choices=["train", "test", "finetune"],
help="Support run mode: 'train', 'test', 'finetune'")
parser.add_argument('--device_id', type=int, default=4,
help="ID of the target device")
parser.add_argument('--device_target', type=str, default='Ascend', choices=["GPU", "Ascend"],
help="The target device to run, support 'Ascend', 'GPU'")
parser.add_argument("--config_file_path", type=str,
default="./configs/vit.yaml")
input_args = parser.parse_args()
return input_args
@log_timer
def train(input_args):
'''Train and test the network'''
mode = input_args.train_mode
print_log(f'running mode: {mode}')
# read params
config = load_yaml_config(input_args.config_file_path)
data_params = config["data"]
model_params = config["model"]
optimizer_params = config["optimizer"]
summary_params = config["summary"]
# prepare dataset
max_value_list = data_params['max_value_list']
min_value_list = data_params['min_value_list']
dataset = AirfoilDataset(max_value_list, min_value_list)
batch_size = data_params['batch_size']
train_dataset, test_dataset = dataset.create_dataset(
dataset_dir=data_params['root_dir'], train_file_name=data_params['train_file_name'],
test_file_name=data_params['test_file_name'],
finetune_file_name=data_params['finetune_file_name'],
batch_size=batch_size,
shuffle=False,
mode=mode,
finetune_size=data_params['finetune_ratio'],
drop_remainder=True)
# prepare loss scaler
if use_ascend:
from mindspore.amp import DynamicLossScaler, all_finite
loss_scaler = DynamicLossScaler(1024, 2, 100)
compute_dtype = mstype.float16
else:
loss_scaler = None
compute_dtype = mstype.float32
# model construction
model = ViT(in_channels=model_params['in_channels'],
out_channels=model_params['out_channels'],
encoder_depths=model_params['encoder_depth'],
encoder_embed_dim=model_params['encoder_embed_dim'],
encoder_num_heads=model_params['encoder_num_heads'],
decoder_depths=model_params['decoder_depth'],
decoder_embed_dim=model_params['decoder_embed_dim'],
decoder_num_heads=model_params['decoder_num_heads'],
compute_dtype=compute_dtype
)
grid_path = os.path.join(
data_params['root_dir'], data_params['grid_file_name'])
if mode in ('finetune', 'test'):
# load pretrained model
param_dict = load_checkpoint(model_params['ckpt_path'])
load_param_into_net(model, param_dict)
print_log("Load pre-trained model successfully")
if mode == 'finetune':
optimizer_params["epochs"] = 200
config["save_ckpt_interval"] = 200
else:
plot_u_v_p(test_dataset, model,
grid_path, summary_params['postprocess_dir'])
calculate_test_error(test_dataset, model, True,
summary_params['postprocess_dir'])
return
model_name = "_".join(
[model_params['name'], "bs", str(batch_size)])
# prepare loss
ckpt_dir, summary_dir = get_ckpt_summary_dir(
summary_params['summary_dir'], model_name)
wave_loss = WaveletTransformLoss(wave_level=optimizer_params['wave_level'])
problem = SteadyFlowWithLoss(model, loss_fn=wave_loss)
# prepare optimizer
steps_per_epoch = train_dataset.get_dataset_size()
print_log(f"number of steps_per_epochs: {steps_per_epoch}")
epochs = optimizer_params["epochs"]
lr = get_warmup_cosine_annealing_lr(lr_init=optimizer_params["learning_rate"],
last_epoch=epochs,
steps_per_epoch=steps_per_epoch,
warmup_epochs=1)
optimizer = nn.Adam(model.trainable_params() +
wave_loss.trainable_params(), learning_rate=Tensor(lr))
def forward_fn(x, y):
loss = problem.get_loss(x, y)
if use_ascend:
loss = loss_scaler.scale(loss)
return loss
grad_fn = ops.value_and_grad(
forward_fn, None, optimizer.parameters, has_aux=False)
@jit
def train_step(x, y):
loss, grads = grad_fn(x, y)
if use_ascend:
loss = loss_scaler.unscale(loss)
is_finite = all_finite(grads)
if is_finite:
grads = loss_scaler.unscale(grads)
loss = ops.depend(loss, optimizer(grads))
loss_scaler.adjust(is_finite)
else:
loss = ops.depend(loss, optimizer(grads))
return loss
train_sink_process = data_sink(train_step, train_dataset, sink_size=1)
test_interval = summary_params['test_interval']
plot_interval = summary_params['plot_interval']
save_ckpt_interval = summary_params['save_ckpt_interval']
# train process
for epoch in range(1, 1 + epochs):
# train
local_time_beg = time.time()
model.set_train(True)
for _ in range(steps_per_epoch):
step_train_loss = train_sink_process()
local_time_end = time.time()
epoch_seconds = local_time_end - local_time_beg
step_seconds = (epoch_seconds/steps_per_epoch)*1000
print_log(f"epoch: {epoch} train loss: {step_train_loss} "
f"epoch time: {epoch_seconds:.3f}s step time: {step_seconds:5.3f}ms")
model.set_train(False)
# test
if epoch % test_interval == 0:
calculate_test_error(test_dataset, model)
# plot
if epoch % plot_interval == 0:
plot_u_and_cp(test_dataset=test_dataset, model=model,
grid_path=grid_path, save_dir=summary_dir)
# save checkpoint
if epoch % save_ckpt_interval == 0:
ckpt_name = f"epoch_{epoch}.ckpt"
save_checkpoint(model, os.path.join(ckpt_dir, ckpt_name))
print_log(f'{ckpt_name} save success')
if __name__ == '__main__':
log_config('./logs', 'vit')
print_log(f'pid: {os.getpid()}')
print_log(datetime.datetime.now())
args = parse_args()
context.set_context(mode=context.GRAPH_MODE if args.mode.upper().startswith("GRAPH")
else context.PYNATIVE_MODE,
device_target=args.device_target,
device_id=args.device_id)
print_log(
f"Running in {args.mode.upper()} mode, using device id: {args.device_id}.")
use_ascend = (args.device_target == "Ascend")
print_log(f'use_ascend : {use_ascend}')
train(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。