mindspore.ops.AdaptiveAvgPool3D
新增算子原语。mindspore.ops.AffineGrid
新增算子原语。mindspore.ops.Angle
新增算子原语。mindspore.ops.BartlettWindow
新增算子原语。mindspore.ops.Bernoulli
新增算子原语。mindspore.ops.BesselI0
新增算子原语。mindspore.ops.BesselI1
新增算子原语。mindspore.ops.BesselJ0
新增算子原语。mindspore.ops.BesselJ1
新增算子原语。mindspore.ops.BesselK0
新增算子原语。mindspore.ops.BesselK0e
新增算子原语。mindspore.ops.BesselK1
新增算子原语。mindspore.ops.BesselK1e
新增算子原语。mindspore.ops.BesselY0
新增算子原语。mindspore.ops.BesselY1
新增算子原语。mindspore.ops.Bincount
新增算子原语。mindspore.ops.BlackmanWindow
新增算子原语。mindspore.ops.ChannelShuffle
新增算子原语。mindspore.ops.Cholesky
新增算子原语。mindspore.ops.Col2Im
新增算子原语。mindspore.ops.Complex
新增算子原语。mindspore.ops.ComplexAbs
新增算子原语。mindspore.ops.Cross
新增算子原语。mindspore.ops.CTCLossV2
新增算子原语。mindspore.ops.Cummin
新增算子原语。mindspore.ops.Diag
新增算子原语。mindspore.ops.Digamma
新增算子原语。mindspore.ops.Eig
新增算子原语。mindspore.ops.Expand
新增算子原语。mindspore.ops.Fmax
新增算子原语。mindspore.ops.Gcd
新增算子原语。mindspore.ops.Geqrf
新增算子原语。mindspore.ops.GLU
新增算子原语。mindspore.ops.GridSampler2D
新增算子原语。mindspore.ops.GridSampler3D
新增算子原语。mindspore.ops.HammingWindow
新增算子原语。mindspore.ops.Heaviside
新增算子原语。mindspore.ops.Hypot
新增算子原语。mindspore.ops.Igamma
新增算子原语。mindspore.ops.IndexFill
新增算子原语。mindspore.ops.InplaceIndexAdd
新增算子原语。mindspore.ops.InplaceUpdateV2
新增算子原语。mindspore.ops.Lcm
新增算子原语。mindspore.ops.LeftShift
新增算子原语。mindspore.ops.LogicalXor
新增算子原语。mindspore.ops.Logit
新增算子原语。mindspore.ops.LogSpace
新增算子原语。mindspore.ops.LuUnpack
新增算子原语。mindspore.ops.MatrixDiagPartV3
新增算子原语。mindspore.ops.MatrixDiagV3
新增算子原语。mindspore.ops.MatrixSetDiagV3
新增算子原语。mindspore.ops.MaxPool3DWithArgmax
新增算子原语。mindspore.ops.MaxUnpool2D
新增算子原语。mindspore.ops.MaxUnpool3D
新增算子原语。mindspore.ops.MultiMarginLoss
新增算子原语。mindspore.ops.MultinomialWithReplacement
新增算子原语。mindspore.ops.Mvlgamma
新增算子原语。mindspore.ops.NanToNum
新增算子原语。mindspore.ops.NextAfter
新增算子原语。mindspore.ops.Orgqr
新增算子原语。mindspore.ops.Polygamma
新增算子原语。mindspore.ops.Qr
新增算子原语。mindspore.ops.ResizeBilinearV2
新增算子原语。mindspore.ops.RightShift
新增算子原语。mindspore.ops.ScatterNdDiv
新增算子原语。mindspore.ops.ScatterNdMul
新增算子原语。mindspore.ops.SearchSorted
新增算子原语。mindspore.ops.Sinc
新增算子原语。mindspore.ops.Trace
新增算子原语。mindspore.ops.Tril
新增算子原语。mindspore.ops.TrilIndices
新增算子原语。mindspore.ops.TriuIndices
新增算子原语。mindspore.ops.UniqueConsecutive
新增算子原语。mindspore.ops.Cummax
新增算子原语。mindspore.ops.FillV2
新增算子原语。mindspore.ops.IsClose
新增算子原语。mindspore.ops.MatrixSolve
新增算子原语。mindspore.ops.Median
新增算子原语。mindspore.ops.MultilabelMarginLoss
新增算子原语。mindspore.ops.NonZero
新增算子原语。mindspore.ops.Pdist
新增算子原语。mindspore.ops.Polar
新增算子原语。mindspore.ops.RandomGamma
新增算子原语。mindspore.ops.RandomPoisson
新增算子原语。mindspore.ops.RandomShuffle
新增算子原语。mindspore.ops.Renorm
新增算子原语。mindspore.ops.ScatterNdMax
新增算子原语。mindspore.ops.ScatterNdMin
新增算子原语。mindspore.ops.Svd
新增算子原语。mindspore.ops.TripletMarginLoss
新增算子原语。mindspore.compression
特性在MindSpore 1.8版本已经废弃,在当前版本被删除。用户可以使用昇思金箍棒作为mindspore.compression
的替代品来实现MindSpore中的量化感知训练算法。mindspore.dataset.close_pool
、mindspore.dataset.to_device
、mindspore.dataset.set_dynamic_columns
接口在之前版本已废弃,当前版本正式删除。接口名称:mindspore.set_context(mode=PYNATIVE_MODE)
变更内容:默认由GRAPH_MODE改为PYNATIVE_MODE。
说明:原有使用方式若未设置运行模式,该变更会影响性能,需要额外设置图模式,则使用以下方式: mindspore.set_context(mode=GRAPH_MODE)。
原接口 | v2.0.0-rc1接口 |
mindspore.set_context(mode=GRAPH_MODE) |
mindspore.set_context(mode=PYNATIVE_MODE) |
接口名称:mindspore.train.Model.train
变更内容:dataset_sink_mode 默认值由True改为False。
说明:原有使用方式若未设置dataset_sink_mode,该变更会影响性能,需要额外设置数据下沉运行模式,则使用以下方式: Model.train(dataset_sink_mode=True)。
原接口 | v2.0.0-rc1接口 |
Model.train(dataset_sink_mode=True) |
Model.train(dataset_sink_mode=False) |
接口名称:mindspore.export
变更内容:参数file_format由"AIR"改为不指定默认值。
说明:原有使用方式若未设置file_format,需要额外设置file_format,则使用以下方式: mindspore.export(net, *inputs, file_name, file_format="AIR", **kwargs)。
原接口 | v2.0.0-rc1接口 |
mindspore.export(net, *inputs, file_name, file_format="AIR", **kwargs) |
mindspore.export(net, *inputs, file_name, file_format, **kwargs) |
接口名称:mindspore.ops.norm
变更内容:扩展ord参数功能,支持多种形式。
原接口 | v2.0.0-rc1接口 |
ops.norm(input_x, axis, p=2, keep_dims=False, epsilon=1e-12) >>> # 举例: >>> input = Tensor(np.array([[[1.0, 2.0], [3.0, 4.0]], ... [[5.0, 6.0], [7.0, 8.0]]]).astype(np.float32)) >>> output = ops.norm(input, [0, 1], p=2) |
ops.norm(A, ord=None, dim=None, keepdim=False, *, dtype=None) >>> # 举例: >>> input = Tensor(np.array([[[1.0, 2.0], [3.0, 4.0]], ... [[5.0, 6.0], [7.0, 8.0]]]).astype(np.float32)) >>> output = ops.norm(input, ord=2, dim=(0, 1)) |
接口名称:mindspore.Tensor.norm
变更内容:扩展ord参数功能,支持多种形式。
说明:参考ops.norm例子。
原接口 | v2.0.0-rc1接口 |
Tensor.norm(axis, p=2, keep_dims=False, epsilon=1e-12) |
Tensor.norm(ord=None, dim=None, keepdim=False, *, dtype=None) |
接口名称:mindspore.ops.dropout
变更内容:删除seed0、seed1参数,新增参数seed=None。由返回Tensor和掩码改为只返回Tensor,新增入参training=True。
原接口 | v2.0.0-rc1接口 |
ops.dropout(x, p=0.5, seed0=0, seed1=0) >>> # 举例: >>> input = Tensor(((20, 16), (50, 50)), ... mindspore.float32) >>> output, mask = dropout(x, p=0.5) |
ops.dropout(input, p=0.5, training=True, seed=None) >>> # 举例: >>> input = Tensor(((20, 16), (50, 50)), ... mindspore.float32) >>> output = ops.dropout(input, p=0.5,training=True) |
接口名称:mindspore.ops.dropout2d
变更内容:返回值从Tensor和掩码改为只返回Tensor,新增入参training=True。
原接口 | v2.0.0-rc1接口 |
ops.dropout2d(x, p=0.5) >>> # 举例: >>> input = Tensor(np.ones([2, 1, 2, 3]), ... mindspore.float32) >>> output, mask = dropout2d(input, 0.5) |
ops.dropout2d(input, p=0.5, training=True) >>> # 举例: >>> input = Tensor(np.ones([2, 1, 2, 3]), ... mindspore.float32) >>> output = ops.dropout2d(input, 0.5, training=True) |
接口名称:mindspore.ops.dropout3d
变更内容:返回值从Tensor和掩码改为只返回Tensor,新增入参training=True。
原接口 | v2.0.0-rc1接口 |
ops.dropout3d(x, p=0.5) >>> # 举例: >>> input = Tensor(np.ones([2, 1, 2, 3]), ... mindspore.float32) >>> output, mask = dropout3d(input, 0.5) |
ops.dropout3d(input, p=0.5, training=True) >>> # 举例: >>> input = Tensor(np.ones([2, 1, 2, 3]), ... mindspore.float32) >>> output = ops.dropout3d(input, 0.5, training=True) |
接口名称:mindspore.ops.std
变更内容:接口重构,接口使用方式更符合用户使用习惯。
说明:原有unbiased如果已显示设置,采用以下替代方案: ddof=0替代unbiased=False,ddof=1替代unbiased=True。
原接口 | v2.0.0-rc1接口 |
ops.std(input_x, axis=(), unbiased=True, keep_dims=False) |
ops.std(input, axis=None, ddof=0, keepdims=False) |
接口名称:mindspore.load_param_into_net
变更内容:新增ckpt中未加载的参数作为返回值。
原接口 | v2.0.0-rc1接口 |
net_param = load_param_into_net() |
net_param, ckpt_param = load_param_into_net() |
接口名称:mindspore.nn.BCELoss
变更内容:reduction
默认值由'none'变为'mean'。
原接口 | v2.0.0-rc1接口 |
BCELoss(weight=None, reduction='none') >>> # 举例: >>> weight = Tensor(np.array([[1.0, 2.0, 3.0], ... [4.0, 3.3, 2.2]]), ... mindspore.float32) >>> loss = nn.BCELoss(weight=weight, reduction='mean') >>> logits = Tensor(np.array([[0.1, 0.2, 0.3], ... [0.5, 0.7, 0.9]]), ... mindspore.float32) >>> labels = Tensor(np.array([[0, 1, 0], [0, 0, 1]]), ... mindspore.float32) >>> output = loss(logits, labels) >>> print(output) >>> 1.8952923 |
BCELoss(weight=None, reduction='mean') >>> # 举例: >>> weight = Tensor(np.array([[1.0, 2.0, 3.0], ... [4.0, 3.3, 2.2]]), ... mindspore.float32) >>> loss = nn.BCELoss(weight=weight) >>> logits = Tensor(np.array([[0.1, 0.2, 0.3], ... [0.5, 0.7, 0.9]]), ... mindspore.float32) >>> labels = Tensor(np.array([[0, 1, 0], [0, 0, 1]]), ... mindspore.float32) >>> output = loss(logits, labels) >>> print(output) >>> 1.8952923 |
接口名称:mindspore.ops.split
变更内容:接口重构,接口使用方式更符合用户使用习惯,调整第2个和第3个参数的顺序,修改并扩展split_size_or_sections功能。
原接口 | v2.0.0-rc1接口 |
ops.split(input_x, axis=0, output_num=1) >>> # 举例: >>> input = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]), ... mindspore.int32) >>> output = ops.split(input, axis=1, output_num=4) |
ops.split(tensor, split_size_or_sections, axis=0) >>> # 举例: >>> input = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]), ... mindspore.int32) >>> output = ops.split(input, split_size_or_sections=1, axis=1) |
接口名称:mindspore.Tensor.split
变更内容:接口重构,接口使用方式更符合用户使用习惯,调整两个参数的位置,修改并扩展split_size_or_sections功能。
说明:参考ops.split例子。
原接口 | v2.0.0-rc1接口 |
Tensor.split(axis=0, output_num=1) |
Tensor.split(split_size_or_sections, axis=0) |
接口名称:mindspore.ops.pad
变更内容:修改参数名paddings为padding,添加mode和value功能。
原接口 | v2.0.0-rc1接口 |
ops.pad(input_x, paddings) >>> # 举例: >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], ... [0.4, 0.5, -3.2]]), ... mindspore.float32) >>> paddings = ((1, 2), (2, 1)) >>> output = ops.pad(input_x, paddings) |
ops.pad(input_x, padding, mode='constant', value=None) >>> # 举例: >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], ... [0.4, 0.5, -3.2]]), ... mindspore.float32) >>> paddings = (2, 1, 1, 2) >>> output = ops.pad(input_x, paddings) |
接口名称:mindspore.ops.meshgrid
变更内容:入参由inputs改为*input。
原接口 | v2.0.0-rc1接口 |
ops.meshgrid(inputs, indexing='xy') >>> # 举例: >>> x = Tensor(np.array([1, 2, 3, 4]).astype(np.int32)) >>> y = Tensor(np.array([5, 6, 7]).astype(np.int32)) >>> z = Tensor(np.array([8, 9, 0, 1, 2]).astype(np.int32)) >>> output = ops.meshgrid((x, y, z), indexing='xy') |
ops.meshgrid(*inputs, indexing='xy') >>> # 举例: >>> x = Tensor(np.array([1, 2, 3, 4]).astype(np.int32)) >>> y = Tensor(np.array([5, 6, 7]).astype(np.int32)) >>> z = Tensor(np.array([8, 9, 0, 1, 2]).astype(np.int32)) >>> output = ops.meshgrid(x, y, z, indexing='xy') |
接口名称:mindspore.ops.max
变更内容:返回值调换顺序,由:“下标,最大值”改为“最大值,下标”。
原接口 | v2.0.0-rc1接口 |
ops.max(x, axis=0, keep_dims=False) >>> # 举例: >>> input = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), ... mindspore.float32) >>> index, output = ops.max(input) >>> print(index, output) >>> 3 0.7 |
ops.max(input, axis=None, keepdims=False, *, initial=None, where=True, return_indices=False) >>> # 举例: >>> input = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), ... mindspore.float32) >>> output, index = ops.max(input, axis=0) >>> print(output, index) |
接口名称:mindspore.ops.min
变更内容:返回值调换顺序,由:“下标,最小值”改为“最小值,下标”。
原接口 | v2.0.0-rc1接口 |
ops.min(x, axis=0, keep_dims=False) >>> # 举例: >>> input = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), ... mindspore.float32) >>> index, output = ops.min(input) >>> 0 0.0 |
ops.min(input, axis=None, keepdims=False, *, initial=None, where=True, return_indices=False) >>> # 举例: >>> input = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), ... mindspore.float32) >>> output, index = ops.min(input, keepdims=True) >>> 0.0 0 |
接口名称:mindspore.ops.random_gamma
变更内容:删除seed2参数,seed=0改为None。框架行为统一且符合用户实际使用场景及习惯。
原接口 | v2.0.0-rc1接口 |
ops.random_gamma(shape, alpha, seed=0, seed2=0) |
ops.random_gamma(shape, alpha, seed=None) |
接口名称:mindspore.ops.standard_laplace
变更内容:删除seed2参数,seed=0改为None。框架行为统一且符合用户实际使用场景及习惯。
原接口 | v2.0.0-rc1接口 |
ops.standard_laplace(shape, seed=0, seed2=0) |
ops.standard_laplace(shape, seed=None) |
接口名称:mindspore.ops.standard_normal
变更内容:删除seed2参数,seed=0改为None。框架行为统一且符合用户实际使用场景及习惯。
原接口 | v2.0.0-rc1接口 |
ops.standard_normal(shape, seed=0, seed2=0) |
ops.standard_normal(shape, seed=None) |
接口名称:mindspore.ops.bernoulli
变更内容:seed的默认值由-1改为None。符合用户实际使用场景。
原接口 | v2.0.0-rc1接口 |
ops.bernoulli(x, p=0.5, seed=-1) |
ops.bernoulli(input, p=0.5, seed=None) |
接口名称:mindspore.data_sink
变更内容:删除steps参数,jit参数名称修改为jit_config,新增input_signature参数。增加易用性,符合用户实际使用场景。
原接口 | v2.0.0-rc1接口 |
mindspore.data_sink(fn, dataset, steps, sink_size=1, jit=False) |
mindspore.data_sink(fn, dataset, sink_size=1, jit_config=None, input_signature=None) |
接口名称:mindspore.ops.conv2d
变更内容:扩展接口功能,添加bias参数,修改参数名及参数顺序。
原接口 | v2.0.0-rc1接口 |
conv2d(inputs, weight, pad_mode="valid", padding=0, stride=1, dilation=1, group=1) |
conv2d(input, weight, bias=None, stride=1, pad_mode="valid", padding=0, dilation=1, groups=1) |
接口名称:mindspore.dataset.vision.Pad
变更内容:调整Pad、RandomCrop、RandomCropWithBbox入参padding,当Padding输入长度为2的序列时,行为将从使用第一个值填充左/上边界,使用第二个值填充右/下边界,变为使用第一个值填充左/右边界,使用第二个值填充上/下边界。
说明:仅使用size为2的padding参数无法兼容旧版本的效果,需显式表示(左、右、上、下)。
原接口 | v2.0.0-rc1接口 |
mindspore.dataset.vision.Pad(padding=(1,2)) 代表图片的左/上填充 1像素,右/下填充 2像素 |
mindspore.dataset.vision.Pad(padding=(1,2,1,2)) 代表图片的左/上填充 1像素,右/下填充 2像素 |
接口名称:mindspore.dataset.Dataset.map
变更内容:删除column_order参数。因为在绝大部分的情况下,output_columns参数与column_order参数都是同一个值,不需要再传入column_order。若需要调整数据列顺序,使用mindspore.dataset.Dataset.project实现。
说明:
原接口 | v2.0.0-rc1接口 |
>>> dataset = dataset.map(operations=[transforms], ... input_columns=["column_a"], ... output_columns=["column_b", "column_c"], ... column_order=["column_c", "column_b"]) |
>>> dataset = dataset.map(operations=[transforms], ... input_columns=["column_a"], ... output_columns=["column_b", "column_c"]) >>> dataset = dataset.project(["column_c", column_b"])") |
接口名称:mindspore.dataset.Dataset.batch
变更内容:删除column_order参数。因为在绝大部分的情况下,output_columns参数与column_order参数都是同一个值,不需要再传入column_order。若需要调整数据列顺序,使用mindspore.dataset.Dataset.project实现。
说明:
原接口 | v2.0.0-rc1接口 |
>>> dataset = dataset.batch(batch_size=4, ... input_columns=["column_a"], ... output_columns=["column_b", "column_c"], ... column_order=["column_c", "column_b"]) |
>>> dataset = dataset.batch(batch_size=4, input_columns=["column_a"] ... output_columns=["column_b", "column_c"]) >>> dataset = dataset.project(["column_c", column_b"])") |
接口名称:mindspore.dataset.Dataset.batch
变更内容:将batch方法拆分为:batch和padded_batch两个方法。pad_info参数从batch方法移动到padded_batch方法。
说明:如需使用pad_info参数,改用padded_batch方法。
原接口 | v2.0.0-rc1接口 |
>>> dataset = dataset.batch(batch_size=4, ... drop_remainder=True, pad_info=...) |
>>> dataset = dataset.padded_batch(batch_size=4, ... drop_remainder=True, pad_info=...) |
[I66PE6] 修复 AssignSub算子异常入参导致core dump的问题。
[I6F5E6] 修复 data_sink 方法在Ascend上执行超时的问题。
感谢以下人员做出的贡献:
alashkari,anzhengqi,archer2049,B.L.LAN,baihuawei,bichaoyang,BJ-WANG,Bokai Li,Brian-K,caifubi,caiyimeng,cathwong,changzherui,ChenDonYY,chenfei_mindspore,chengang,chengbin,chenhaozhe,chenjianping,chenkang,chenweifeng,chuht,chujinjin,davidanugraha,DavidFFFan,DeshiChen,douzhixing,emmmmtang,Erpim,Ethan,fangwenyi,fangzehua,fangzhou0329,fary86,fengyixing,gaoshuanglong,Gaoxiong,gaoyong10,gengdongjie,gongdaguo1,Greatpan,GuoZhibin,guozhijian,hangq,hanhuifeng,haozhang,hedongdong,Henry Shi,heterogeneous_to_backoff_2_0,huangbingjian,huanghui,huangxinjing,hujiahui8,hujingsong,huoxinyou,jachua,jiahongQian,jianghui58,jiangzhenguang,jiaorui,jiaoy1224,jijiarong,jjfeing,JoeyLin,json,JuiceZ,jxl,kairui_kou,KevinYi,kisnwang,KXiong,laiyongqiang,lanzhineng,liangchenghui,liangzelang,LiangZhibo,lianliguang,lichen,ligan,lijunbin,limingqi107,ling,linqingke,liubuyu,liuchao,liuchuting,liujunzhu,liuluobin,liutongtong9,liuyang811,lixiao,liyan2022,liyejun,liyuxia,looop5,luochao60,luojianing,luoyang,luoyuan,lyqlola,maning202007,maoyaomin,Margaret_wangrui,mayadong,MaZhiming,melody,mengyuanli,michaelzhu_70ab,Mohammad Motallebi,moran,NaCN,nomindcarry,OwenSec,panfengfeng,panshaowu,panzhihui,pkuliuliu,qinzheng,qiuzhongya,qujianwei,r1chardf1d0,Renyuan Zhang,RobinGrosman,shaojunsong,shenwei41,Soaringfish,tangdezhi_123,tanghuikang,tan-wei-cheng,TinaMengtingZhang,TronZhang,TuDouNi,VectorSL,wang_ziqi,wanghenchang,wangnan39,wangpingan,wangshaocong,wangshengnan123,wangtongyu6,weichaoran,wind-zyx,wqx,wtcheng,wujueying,wYann,XianglongZeng,xiaohanzhang,xiaotianci,xiaoyao,XinDu,xulei,xumengjuan1,xupan,xwkgch,yanghaoran,yangluhang,yangruoqi713,yangshuo,yangsijia,yangzhenzhang,yanzhenxiang2020,Yanzhi_YI,yao_yf,yefeng,yeyunpeng2020,Yi_zhang95,yide12,YijieChen,YingLai Lin,YingtongHu,youshu,yuchaojie,yuedongli,YuJianfeng,zangqx,ZengZitao,zhangbuxue,zhangdanyang,zhangdong,zhangfanghe,zhangqi,zhangqinghua,zhangyanhui,zhangyinxia,zhangyongxian,zhangzhaoju,zhanzhan,zhengzuohe,ZhidanLiu,zhixinaa,zhoufeng,zhouyaqiang0,zhuguodong,zhupuxu,zhuyuxiao,zichun_ye,zjun,zlq2020,zong_shuai,ZPaC,zuochuanyong,zyli2020,陈宇,范吉斌,冯一航,胡彬,宦晓玲,黄勇,雷元哲,李良灿,李林杰,刘崇鸣,刘力力,刘勇琪,吕浩宇,吕昱峰(Nate.River),没有窗户的小巷,沈竞兴,十六夜,王程浩,王禹程,王振邦,徐安越,徐永飞,杨旭华,于振华,俞涵,张清华,张澍坤,张栩浩,张学同,赵英灼,周超,周洪叶,朱家兴
欢迎以任何形式对项目提供贡献!
原MindSpore Lite版本主要面向手机、车机等边缘设备,新增云侧推理版本支持云侧多后端硬件资源的场景,支持Ascend及Nvidia GPU推理专用卡,高效利用云侧多核资源。
原通过MindSpore训练版本集成的推理方式可以变更为基于MindSpore Lite进行适配集成,具体可参考云侧推理快速入门,如果想要保持原始集成方式可以参考MindSpore推理FAQ。
Model
接口和ModelParallelRunner
并行推理接口。mindspore.dataset.config.set_seed
对随机种子设置不生效的问题。支持更多算子分布式能力。
Element Wise类算子:AddN、 BitwiseAnd、 BitwiseOr、 BitwiseXor、 CumProd、 HShrink、 HSigmoid、 IsFinite、 Mish、 MulNoNan、 Rint、 SeLU、 SoftShrink、 TruncateDiv、 TruncateMod、 Xdivy Xlogy、 InplaceAdd、 InplacSub、 InplaceUpdate、 Cdist、 L2Loss、 Lerp。
Math类算子:SquaredDifference、 Erfinv、 MaskedFill、 SplitV、 Gamma、 KLDivLoss、 LinSpace。Scatter类算子:ScatterAdd、ScatterDiv、ScatterMax、ScatterMul、ScatterNdAdd、ScatterNdSub、ScatterNdUpdate、ScatterSub、TensorScatterAdd、TensorScatterDiv、TensorScatterMax、TensorScatterMax、TensorScatterMul、TensorScatterAdd、TensorScatterUpdate。
增加transform_checkpoints
和transform_checkpoint_by_rank
接口。给定转换前后的策略文件,即可实现对分布式权重转换。详情请参考分布式弹性训练与推理。
mindspore.ops.AdaptiveMaxPool3D
新增算子原语。mindspore.ops.AdjustHue
新增算子原语。mindspore.ops.BartlettWindow
新增算子原语。mindspore.ops.BesselJ0
新增算子原语。mindspore.ops.BesselJ1
新增算子原语。mindspore.ops.BesselK0
新增算子原语。mindspore.ops.BesselK0e
新增算子原语。mindspore.ops.BesselK1
新增算子原语。mindspore.ops.BesselK1e
新增算子原语。mindspore.ops.BesselY0
新增算子原语。mindspore.ops.BesselY1
新增算子原语。mindspore.ops.Betainc
新增算子原语。mindspore.ops.Bincount
新增算子原语。mindspore.ops.BlackmanWindow
新增算子原语。mindspore.ops.Bucketize
新增算子原语。mindspore.ops.CombinedNonMaxSuppression
新增算子原语。mindspore.ops.CompareAndBitpack
新增算子原语。mindspore.ops.Complex
新增算子原语。mindspore.ops.DataFormatVecPermute
新增算子原语。mindspore.ops.Eig
新增算子原语。mindspore.ops.EuclideanNorm
新增算子原语。mindspore.ops.Expand
新增算子原语。mindspore.ops.ExtractGlimpse
新增算子原语。mindspore.ops.FillDiagonal
新增算子原语。mindspore.ops.FractionalAvgPool
新增算子原语。mindspore.ops.FractionalMaxPool
新增算子原语。mindspore.ops.Gcd
新增算子原语。mindspore.ops.HammingWindow
新增算子原语。mindspore.ops.Histogram
新增算子原语。mindspore.ops.HSVToRGB
新增算子原语。mindspore.ops.Lcm
新增算子原语。mindspore.ops.LeftShift
新增算子原语。mindspore.ops.ListDiff
新增算子原语。mindspore.ops.LogSpace
新增算子原语。mindspore.ops.Lstsq
新增算子原语。mindspore.ops.MatrixDiagPartV3
新增算子原语。mindspore.ops.MatrixDiagV3
新增算子原语。mindspore.ops.MatrixExp
新增算子原语。mindspore.ops.MatrixPower
新增算子原语。mindspore.ops.MaxPool3DWithArgmax
新增算子原语。mindspore.ops.MaxUnpool2D
新增算子原语。mindspore.ops.MultilabelMarginLoss
新增算子原语。mindspore.ops.NextAfter
新增算子原语。mindspore.ops.Orgqr
新增算子原语。mindspore.ops.ReduceStd
新增算子原语。mindspore.ops.ResizeNearestNeighborV2
新增算子原语。mindspore.ops.RGBToHSV
新增算子原语。mindspore.ops.RightShift
新增算子原语。mindspore.ops.Roll
新增算子原语。mindspore.ops.SampleDistortedBoundingBoxV2
新增算子原语。mindspore.ops.ScaleAndTranslate
新增算子原语。mindspore.ops.ScatterAddWithAxis
新增算子原语。mindspore.ops.ScatterNdDiv
新增算子原语。mindspore.ops.ScatterNdMax
新增算子原语。mindspore.ops.ScatterNdMul
新增算子原语。mindspore.ops.STFT
新增算子原语。mindspore.ops.Trace
新增算子原语。mindspore.ops.UpsampleNearest3D
新增算子原语。mindspore.ops.UpsampleTrilinear3D
新增算子原语。mindspore.parallel.transform_checkpoints
新增分布式权重转换接口。mindspore.parallel.transform_checkpoint_by_rank
新增分布式权重转换接口。mindspore.ms_function
接口名替换为mindspore.jit
,mindspore.ms_function
将在未来版本中弃用并删除。mindspore.ms_class
接口名替换为mindspore.jit_class
,mindspore.ms_class
将在未来版本中弃用并删除。mindspore.ops.ms_kernel
接口名替换为mindspore.ops.kernel
,mindspore.ops.ms_kernel
将在未来版本中弃用并删除。mindspore.dataset.map
接口参数 column_order
不再生效,使用mindspore.dataset.project
替换。mindspore.dataset.close_pool
、mindspore.dataset.to_device
、mindspore.dataset.set_dynamic_columns
接口在之前版本已废弃,当前版本正式删除。感谢以下人员做出的贡献:
AGroupofProbiotocs, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hesham, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Jiabin Liu, jianghui58, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, liuyongqi, laiyongqiang, leonwanghui, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, lvchangquan, lvliang, lz, maning202007, Margaret_wangrui, mengyuanli, Ming_blue, ms_yan, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking, shu-kun-zhang.
欢迎以任何形式对项目提供贡献!
感谢以下人员做出的贡献:
archer2049, caifubi, chenfei_mindspore, gaoshuanglong, Greatpan, guozhijian, huoxinyou, Kxiong, lanzhineng, lijunbin, liubuyu, liuchuting, luochao60, lyqlola, nomindcarry, TuDouNi, xiaotianci, xupan, yangshuo, yefeng, YingtongHu, yuchaojie, zhoufeng, ZPaC, 刘勇琪, 吕昱峰, 王禹程, 于振华.
欢迎以任何形式对项目提供贡献!
感谢以下人员做出的贡献:
AGroupofProbiotocs, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hesham, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Jiabin Liu, jianghui58, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, liuyongqi, laiyongqiang, leonwanghui, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, lvchangquan, lvliang, lz, maning202007, Margaret_wangrui, mengyuanli, Ming_blue, ms_yan, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking, shu-kun-zhang.
欢迎以任何形式对项目提供贡献!
mindspore.amp.LossScaler
、 mindspore.amp.DynamicLossScaler
、 mindspore.amp.StaticLossScaler
、 mindspore.amp.auto_mixed_precision
、 mindspore.amp.all_finite
等融合编程范式下的混合精度接口。nn.AdaptiveAvgPool3d
新增nn接口。ops.adaptive_avg_pool3d
新增functional接口。ops.addcdiv
新增functional接口。ops.addcmul
新增functional接口。ops.approximate_equal
新增GPU、CPU支持。ops.atanh
新增GPU支持。ops.bessel_i0
新增GPU支持。ops.bessel_i0e
新增Ascend支持。ops.bessel_i1
新增GPU支持。ops.bessel_i1e
新增Ascend、GPU支持。ops.bessel_j0
新增GPU支持。ops.bessel_j1
新增GPU支持。ops.bessel_k0
新增GPU支持。ops.bessel_k0e
新增GPU支持。ops.bessel_k1
新增GPU支持。ops.bessel_k1e
新增GPU支持。ops.bessel_y0
新增GPU支持。ops.bessel_y1
新增GPU支持。ops.bias_add
新增functional接口。ops.bitwise_and
新增GPU支持。ops.bitwise_or
新增GPU支持。ops.bitwise_xor
新增GPU支持。ops.grid_sample
新增Ascend支持。ops.inplace_update
新增CPU支持。ops.isclose
新增Ascend、GPU支持。ops.isnan
新增Ascend支持。ops.lerp
新增GPU支持。ops.random_poisson
新增functional接口。ops.reverse_sequence
新增functional接口。ops.scatter_mul
新增GPU支持。ops.scatter_nd_max
新增functional接口。ops.scatter_nd_min
新增functional接口。ops.SparseToDense
新增GPU支持。ops.square
新增functional接口。ops.standard_laplace
新增GPU支持。ops.std
新增functional接口。ops.trunc
新增Ascend、GPU支持。ops.unsorted_segment_sum
新增functional接口。ops.xdivy
新增functional接口。ops.xlogy
新增GPU支持。ops.poisson
接口废弃使用,对应新接口为 ops.random_poisson
。ops.SparseApplyAdagrad
接口废弃使用,可使用 ops.SparseApplyAdagradV2
接口替代。[BUGFIX] 修改混合精度O2 level的判断逻辑,在原来屏蔽 BatchNorm1d
、 BatchNorm2d
算子的基础上,添加另外两个屏蔽算子BatchNorm3d
和LayerNorm
,这4个算子依然用float32数据类型计算。
[BUGFIX] Dataset处理字符串类型数据时,若调用create_dict_iterator
或create_tuple_iterator
接口时指定了output_numpy=True
,获取到的数据会是numpy.bytes_
类型。修复此问题后接口会直接返回numpy.str_
类型数据,用户无需再对其进行字符串解码操作。同样,在使用自定义数据处理函数时,接收到的数据也将直接是numpy.str_
类型,与原始数据类型相匹配。
感谢以下人员做出的贡献:
AGroupofProbiotocs, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, hesham, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Jiabin Liu, jianghui58, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, liuyongqi, laiyongqiang, leonwanghui, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, liyanliu, lizhenyu, lvchangquan, lvliang, lz, maning202007, Margaret_wangrui, mengyuanli, Ming_blue, ms_yan, panfengfeng, panyifeng, Payne, peixu_ren, Pengyongrong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, Wan, wandongdong, wangdongxu, wangmin, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xuyongfei, yanghaitao, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanyuan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking, shu-kun-zhang.
欢迎以任何形式对项目提供贡献!
mindspore.train.Model.fit
API,增加两种callback方法 mindspore.train.callback.EarlyStopping
和 mindspore.train.callback.ReduceLROnPlateau
。mindspore.dataset.vision.c_transforms.SoftDvppDecodeRandomCropResizeJpeg
和 mindspore.dataset.vision.c_transforms.SoftDvppDecodeResizeJpeg
接口。on_train_epoch_end
方法,实现在 mindspore.train.Model.fit
中使用时,打印epoch级别的metric信息。filter_prefix
:不再支持空字符串(""),匹配规则由强匹配修改为模糊匹配。mindspore.context、mindspore.parallel、mindspore.profiler、mindspore.train模块的接口可直接在mindspore模块使用。原有用法仍可以继续支持。
例如:
mindspore.context.set_context
可简化为mindspore.set_context
。mindspore.parallel.set_algo_parameters
可简化为mindspore.set_algo_parameters
。mindspore.profiler.Profiler
可简化为mindspore.Profiler
。mindspore.train.callback.Callback
可简化为mindspore.train.Callback
。API页面统一汇总至:https://www.mindspore.cn/docs/zh-CN/r1.8/api_python/mindspore.html。
感谢以下人员做出的贡献:
AGroupofProbiotocs, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hesham, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Jiabin Liu, jianghui58, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, liuyongqi, laiyongqiang, leonwanghui, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, lvchangquan, lvliang, lz, maning202007, Margaret_wangrui, mengyuanli, Ming_blue, ms_yan, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking, shu-kun-zhang.
欢迎以任何形式对项目提供贡献!
mindspore.numpy.rand()
、mindspore.numpy.randn()
、mindspore.numpy.randint()
和mindspore.ops.arange ()
。mindspore.train.callback.History
。mindspore.ms_class
类装饰器,支持获取用户自定义类的属性和方法。__getitem__/__next__
方法返回单个NumPy对象,对应会输出单个数据列。ulimit -u 10240
增加当前用户可用的线程/进程数解决。import mindspore.dataset.engine.datasets as ds
,因其import目录过深且过度依赖Python目录结构。推荐使用 import mindspore.dataset as ds
,更多参考详见 API文档。mindspore.ms_class
接口,作为用户自定义类的类装饰器,使得MindSpore能够识别用户自定义类,并且获取这些类的属性和方法。(!30855)mindspore.SparseTensor
接口废弃使用,对应新接口为mindspore.COOTensor
。 (!28505)internal
,作为框架内部使用。感谢以下人员做出的贡献:
AGroupofProbiotocs, anzhengqi, askmiao, baihuawei, baiyangfan, bai-yangfan, bingyaweng, BowenK, buxue, caifubi, CaoJian, caojian05, caozhou, Cathy, changzherui, chenbo116, chenfei, chengxianbin, chenhaozhe, chenjianping, chenzomi, chenzupeng, chujinjin, cj, cjh9368, Corleone, damon0626, danish, Danish, davidmc, dayschan, doitH, dong-li001, fary86, fuzhiye, Gaoxiong, GAO_HYP_XYJ, gengdongjie, Gogery, gongdaguo, gray0v0, gukecai, guoqi, gzhcv, hangq, hanhuifeng2020, Harshvardhan, He, heleiwang, hesham, hexia, Hoai, HuangBingjian, huangdongrun, huanghui, huangxinjing, huqi, huzhifeng, hwjiaorui, Jiabin Liu, jianghui58, Jiaqi, jin-xiulang, jinyaohui, jjfeing, John, jonyguo, JulyAi, jzg, kai00, kingfo, kingxian, kpy, kswang, liuyongqi, laiyongqiang, leonwanghui, liangchenghui, liangzelang, lichen_101010, lichenever, lihongkang, lilei, limingqi107, ling, linqingke, Lin Xh, liubuyu, liuwenhao4, liuxiao78, liuxiao93, liuyang_655, liuzhongkai, Lixia, lixian, liyanliu, liyong, lizhenyu, luopengting, lvchangquan, lvliang, lz, maning202007, Margaret_wangrui, mengyuanli, Ming_blue, ms_yan, ougongchang, panfengfeng, panyifeng, Payne, Peilin, peixu_ren, Pengyongrong, qianlong, qianjiahong, r1chardf1d0, riemann_penn, rmdyh, Sheng, shenwei41, simson, Simson, Su, sunsuodong, tao_yunhao, tinazhang, VectorSL, , Wan, wandongdong, wangdongxu, wangmin, wangyue01, wangzhe, wanyiming, Wei, wenchunjiang, wilfChen, WilliamLian, wsc, wudenggang, wukesong, wuweikang, wuxuejian, Xiao Tianci, Xiaoda, xiefangqi, xinyunfan, xuanyue, xuyongfei, yanghaitao, yanghaitao1, yanghaoran, YangLuo, yangruoqi713, yankai, yanzhenxiang2020, yao_yf, yepei6, yeyunpeng, Yi, yoni, yoonlee666, yuchaojie, yujianfeng, yuximiao, zengzitao, Zhang, zhanghuiyao, zhanghui_china, zhangxinfeng3, zhangyihui, zhangz0911gm, zhanke, zhanyuan, zhaodezan, zhaojichen, zhaoting, zhaozhenlong, zhengjun10, zhiqwang, zhoufeng, zhousiyi, zhouyaqiang, zhouyifengCode, Zichun, Ziyan, zjun, ZPaC, wangfengwfwf, zymaa, gerayking.
欢迎以任何形式对项目提供贡献!
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。