1.6K Star 6.1K Fork 2.4K

GVPMindSpore / mindspore

Create your Gitee Account
Explore and code with more than 6 million developers,Free private repositories !:)
Sign up
Clone or Download
MindSporeNetnative.cpp 17.43 KB
Copy Edit Web IDE Raw Blame History
hukang hwx963878 authored 2021-03-18 09:33 . import minddata
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <jni.h>
#include <android/bitmap.h>
#include <android/asset_manager_jni.h>
#include <android/log.h>
#include <utility>
#include <cstring>
#include <vector>
#include <string>
#include <unordered_map>
#include <set>
#include "include/errorcode.h"
#include "include/ms_tensor.h"
#include "MindSporeNetnative.h"
#include "MSNetWork.h"
#include "lite_cv/lite_mat.h"
#include "lite_cv/image_process.h"
using mindspore::dataset::LiteMat;
using mindspore::dataset::LPixelType;
using mindspore::dataset::LDataType;
#define MS_PRINT(format, ...) __android_log_print(ANDROID_LOG_INFO, "MSJNI", format, ##__VA_ARGS__)
static const int RET_CATEGORY_SUM = 410;
static const char *labels_name_map[RET_CATEGORY_SUM] = {
"Herd", "Safari", "Bangle", "Cushion", "Countertop",
"Prom", "Branch", "Sports", "Sky", "Community",
"Wheel", "Cola", "Tuxedo", "Flowerpot", "Team",
"Computer", "Unicycle", "Brig", "Aerospace engineering", "Scuba diving",
"Goggles", "Fruit", "Badminton", "Horse", "Sunglasses",
"Fun", "Prairie", "Poster", "Flag", "Speedboat",
"Eyelash", "Veil", "Mobile phone", "Wheelbarrow", "Saucer",
"Leather", "Drawer", "Paper", "Pier", "Waterfowl",
"Tights", "Rickshaw", "Vegetable", "Handrail", "Ice",
"Metal", "Flower", "Wing", "Silverware", "Event",
"Skyline", "Money", "Comics", "Handbag", "Porcelain",
"Rodeo", "Curtain", "Tile", "Human mouth", "Army",
"Menu", "Boat", "Snowboarding", "Cairn terrier", "Net",
"Pasteles", "Cup", "Rugby", "Pho", "Cap",
"Human hair", "Surfing", "Loveseat", "Museum", "Shipwreck",
"Trunk (Tree)", "Plush", "Monochrome", "Volcano", "Rock",
"Pillow", "Presentation", "Nebula", "Subwoofer", "Lake",
"Sledding", "Bangs", "Tablecloth", "Necklace", "Swimwear",
"Standing", "Jeans", "Carnival", "Softball", "Centrepiece",
"Skateboarder", "Cake", "Dragon", "Aurora", "Skiing",
"Bathroom", "Dog", "Needlework", "Umbrella", "Church",
"Fire", "Piano", "Denim", "Bridle", "Cabinetry",
"Lipstick", "Ring", "Television", "Roller", "Seal",
"Concert", "Product", "News", "Fast food", "Horn (Animal)",
"Tattoo", "Bird", "Bridegroom", "Love", "Helmet",
"Dinosaur", "Icing", "Miniature", "Tire", "Toy",
"Icicle", "Jacket", "Coffee", "Mosque", "Rowing",
"Wetsuit", "Camping", "Underwater", "Christmas", "Gelato",
"Whiteboard", "Field", "Ragdoll", "Construction", "Lampshade",
"Palace", "Meal", "Factory", "Cage", "Clipper (Boat)",
"Gymnastics", "Turtle", "Human foot", "Marriage", "Web page",
"Human beard", "Fog", "Wool", "Cappuccino", "Lighthouse",
"Lego", "Sparkler", "Sari", "Model", "Temple",
"Beanie", "Building", "Waterfall", "Penguin", "Cave",
"Stadium", "Smile", "Human hand", "Park", "Desk",
"Shetland sheepdog", "Bar", "Eating", "Neon", "Dalmatian",
"Crocodile", "Wakeboarding", "Longboard", "Road", "Race",
"Kitchen", "Odometer", "Cliff", "Fiction", "School",
"Interaction", "Bullfighting", "Boxer", "Gown", "Aquarium",
"Superhero", "Pie", "Asphalt", "Surfboard", "Cheeseburger",
"Screenshot", "Supper", "Laugh", "Lunch", "Party ",
"Glacier", "Bench", "Grandparent", "Sink", "Pomacentridae",
"Blazer", "Brick", "Space", "Backpacking", "Stuffed toy",
"Sushi", "Glitter", "Bonfire", "Castle", "Marathon",
"Pizza", "Beach", "Human ear", "Racing", "Sitting",
"Iceberg", "Shelf", "Vehicle", "Pop music", "Playground",
"Clown", "Car", "Rein", "Fur", "Musician",
"Casino", "Baby", "Alcohol", "Strap", "Reef",
"Balloon", "Outerwear", "Cathedral", "Competition", "Joker",
"Blackboard", "Bunk bed", "Bear", "Moon", "Archery",
"Polo", "River", "Fishing", "Ferris wheel", "Mortarboard",
"Bracelet", "Flesh", "Statue", "Farm", "Desert",
"Chain", "Aircraft", "Textile", "Hot dog", "Knitting",
"Singer", "Juice", "Circus", "Chair", "Musical instrument",
"Room", "Crochet", "Sailboat", "Newspaper", "Santa claus",
"Swamp", "Skyscraper", "Skin", "Rocket", "Aviation",
"Airliner", "Garden", "Ruins", "Storm", "Glasses",
"Balance", "Nail (Body part)", "Rainbow", "Soil ", "Vacation ",
"Moustache", "Doily", "Food", "Bride ", "Cattle",
"Pocket", "Infrastructure", "Train", "Gerbil", "Fireworks",
"Pet", "Dam", "Crew", "Couch", "Bathing",
"Quilting", "Motorcycle", "Butterfly", "Sled", "Watercolor paint",
"Rafting", "Monument", "Lightning", "Sunset", "Bumper",
"Shoe", "Waterskiing", "Sneakers", "Tower", "Insect",
"Pool", "Placemat", "Airplane", "Plant", "Jungle",
"Armrest", "Duck", "Dress", "Tableware", "Petal",
"Bus", "Hanukkah", "Forest", "Hat", "Barn",
"Tubing", "Snorkeling", "Cool", "Cookware and bakeware", "Cycling",
"Swing (Seat)", "Muscle", "Cat", "Skateboard", "Star",
"Toe", "Junk", "Bicycle", "Bedroom", "Person",
"Sand", "Canyon", "Tie", "Twig", "Sphynx",
"Supervillain", "Nightclub", "Ranch", "Pattern", "Shorts",
"Himalayan", "Wall", "Leggings", "Windsurfing", "Deejay",
"Dance", "Van", "Bento", "Sleep", "Wine",
"Picnic", "Leisure", "Dune", "Crowd", "Kayak",
"Ballroom", "Selfie", "Graduation", "Frigate", "Mountain",
"Dude", "Windshield", "Skiff", "Class", "Scarf",
"Bull", "Soccer", "Bag", "Basset hound", "Tractor",
"Swimming", "Running", "Track", "Helicopter", "Pitch",
"Clock", "Song", "Jersey", "Stairs", "Flap",
"Jewellery", "Bridge", "Cuisine", "Bread", "Caving",
"Shell", "Wreath", "Roof", "Cookie", "Canoe"};
static float g_thres_map[RET_CATEGORY_SUM] = {
0.23, 0.03, 0.10, 0.13, 0.03,
0.10, 0.06, 0.09, 0.09, 0.05,
0.01, 0.04, 0.01, 0.27, 0.05,
0.16, 0.01, 0.16, 0.04, 0.13,
0.09, 0.18, 0.10, 0.65, 0.08,
0.04, 0.08, 0.01, 0.05, 0.20,
0.01, 0.16, 0.10, 0.10, 0.10,
0.02, 0.24, 0.08, 0.10, 0.53,
0.07, 0.05, 0.07, 0.27, 0.02,
0.01, 0.71, 0.01, 0.06, 0.06,
0.03, 0.96, 0.03, 0.94, 0.05,
0.03, 0.14, 0.09, 0.03, 0.11,
0.50, 0.16, 0.07, 0.07, 0.06,
0.07, 0.08, 0.10, 0.29, 0.03,
0.05, 0.11, 0.03, 0.03, 0.03,
0.01, 0.11, 0.07, 0.03, 0.49,
0.12, 0.30, 0.10, 0.15, 0.02,
0.06, 0.17, 0.01, 0.04, 0.07,
0.06, 0.02, 0.19, 0.20, 0.14,
0.35, 0.15, 0.01, 0.10, 0.13,
0.43, 0.11, 0.12, 0.32, 0.01,
0.22, 0.51, 0.02, 0.04, 0.14,
0.04, 0.35, 0.35, 0.01, 0.54,
0.04, 0.02, 0.03, 0.02, 0.38,
0.13, 0.19, 0.06, 0.01, 0.02,
0.06, 0.03, 0.04, 0.01, 0.10,
0.01, 0.07, 0.07, 0.07, 0.33,
0.08, 0.04, 0.06, 0.07, 0.07,
0.11, 0.02, 0.32, 0.48, 0.14,
0.01, 0.01, 0.04, 0.05, 0.04,
0.16, 0.50, 0.11, 0.03, 0.04,
0.02, 0.55, 0.17, 0.13, 0.84,
0.18, 0.03, 0.16, 0.02, 0.06,
0.03, 0.11, 0.96, 0.36, 0.68,
0.02, 0.08, 0.02, 0.01, 0.03,
0.05, 0.14, 0.09, 0.06, 0.03,
0.20, 0.15, 0.62, 0.03, 0.10,
0.08, 0.02, 0.02, 0.06, 0.03,
0.04, 0.01, 0.10, 0.05, 0.04,
0.02, 0.07, 0.03, 0.32, 0.11,
0.03, 0.02, 0.03, 0.01, 0.03,
0.03, 0.25, 0.20, 0.19, 0.03,
0.11, 0.03, 0.02, 0.03, 0.15,
0.14, 0.06, 0.11, 0.03, 0.02,
0.02, 0.52, 0.03, 0.02, 0.02,
0.02, 0.09, 0.56, 0.01, 0.22,
0.01, 0.48, 0.14, 0.10, 0.08,
0.73, 0.39, 0.09, 0.10, 0.85,
0.31, 0.03, 0.05, 0.01, 0.01,
0.01, 0.10, 0.28, 0.02, 0.03,
0.04, 0.03, 0.07, 0.14, 0.20,
0.10, 0.01, 0.05, 0.37, 0.12,
0.04, 0.44, 0.04, 0.26, 0.08,
0.07, 0.27, 0.10, 0.03, 0.01,
0.03, 0.16, 0.41, 0.16, 0.34,
0.04, 0.30, 0.04, 0.05, 0.18,
0.33, 0.03, 0.21, 0.03, 0.04,
0.22, 0.01, 0.04, 0.02, 0.01,
0.06, 0.02, 0.08, 0.87, 0.11,
0.15, 0.05, 0.14, 0.09, 0.08,
0.22, 0.09, 0.07, 0.06, 0.06,
0.05, 0.43, 0.70, 0.03, 0.07,
0.06, 0.07, 0.14, 0.04, 0.01,
0.03, 0.05, 0.65, 0.06, 0.04,
0.23, 0.06, 0.75, 0.10, 0.01,
0.63, 0.41, 0.09, 0.01, 0.01,
0.18, 0.10, 0.03, 0.01, 0.05,
0.13, 0.18, 0.03, 0.23, 0.01,
0.04, 0.03, 0.38, 0.90, 0.21,
0.18, 0.10, 0.48, 0.08, 0.46,
0.03, 0.01, 0.02, 0.03, 0.10,
0.01, 0.09, 0.01, 0.01, 0.01,
0.10, 0.41, 0.01, 0.06, 0.75,
0.08, 0.01, 0.01, 0.08, 0.21,
0.06, 0.02, 0.05, 0.02, 0.05,
0.09, 0.12, 0.03, 0.06, 0.11,
0.03, 0.01, 0.01, 0.06, 0.84,
0.04, 0.81, 0.39, 0.02, 0.29,
0.77, 0.07, 0.06, 0.22, 0.23,
0.23, 0.01, 0.02, 0.13, 0.04,
0.19, 0.04, 0.08, 0.27, 0.09,
0.06, 0.01, 0.03, 0.21, 0.04,
};
char *CreateLocalModelBuffer(JNIEnv *env, jobject modelBuffer) {
jbyte *modelAddr = static_cast<jbyte *>(env->GetDirectBufferAddress(modelBuffer));
int modelLen = static_cast<int>(env->GetDirectBufferCapacity(modelBuffer));
char *buffer(new char[modelLen]);
memcpy(buffer, modelAddr, modelLen);
return buffer;
}
/**
* To process the result of MindSpore inference.
* @param msOutputs
* @return
*/
std::string ProcessRunnetResult(const int RET_CATEGORY_SUM, const char *const labels_name_map[],
std::unordered_map<std::string, mindspore::tensor::MSTensor *> msOutputs) {
// Get the branch of the model output.
// Use iterators to get map elements.
std::unordered_map<std::string, mindspore::tensor::MSTensor *>::iterator iter;
iter = msOutputs.begin();
// The mobilenetv2.ms model output just one branch.
auto outputTensor = iter->second;
int tensorNum = outputTensor->ElementsNum();
MS_PRINT("Number of tensor elements:%d", tensorNum);
// Get a pointer to the first score.
float *temp_scores = static_cast<float *>(outputTensor->MutableData());
float scores[RET_CATEGORY_SUM];
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
scores[i] = temp_scores[i];
}
const float unifiedThre = 0.5;
const float probMax = 1.0;
for (size_t i = 0; i < RET_CATEGORY_SUM; ++i) {
float threshold = g_thres_map[i];
float tmpProb = scores[i];
if (tmpProb < threshold) {
tmpProb = tmpProb / threshold * unifiedThre;
} else {
tmpProb = (tmpProb - threshold) / (probMax - threshold) * unifiedThre + unifiedThre;
}
scores[i] = tmpProb;
}
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
if (scores[i] > 0.5) {
MS_PRINT("MindSpore scores[%d] : [%f]", i, scores[i]);
}
}
// Score for each category.
// Converted to text information that needs to be displayed in the APP.
std::string categoryScore = "";
for (int i = 0; i < RET_CATEGORY_SUM; ++i) {
categoryScore += labels_name_map[i];
categoryScore += ":";
std::string score_str = std::to_string(scores[i]);
categoryScore += score_str;
categoryScore += ";";
}
return categoryScore;
}
bool BitmapToLiteMat(JNIEnv *env, const jobject &srcBitmap, LiteMat *lite_mat) {
bool ret = false;
AndroidBitmapInfo info;
void *pixels = nullptr;
LiteMat &lite_mat_bgr = *lite_mat;
AndroidBitmap_getInfo(env, srcBitmap, &info);
if (info.format != ANDROID_BITMAP_FORMAT_RGBA_8888) {
MS_PRINT("Image Err, Request RGBA");
return false;
}
AndroidBitmap_lockPixels(env, srcBitmap, &pixels);
if (info.stride == info.width*4) {
ret = InitFromPixel(reinterpret_cast<const unsigned char *>(pixels),
LPixelType::RGBA2RGB, LDataType::UINT8,
info.width, info.height, lite_mat_bgr);
if (!ret) {
MS_PRINT("Init From RGBA error");
}
} else {
unsigned char *pixels_ptr = new unsigned char[info.width * info.height * 4];
unsigned char *ptr = pixels_ptr;
unsigned char *data = reinterpret_cast<unsigned char *>(pixels);
for (int i = 0; i < info.height; i++) {
memcpy(ptr, data, info.width * 4);
ptr += info.width * 4;
data += info.stride;
}
ret = InitFromPixel(reinterpret_cast<const unsigned char *>(pixels_ptr),
LPixelType::RGBA2RGB, LDataType::UINT8,
info.width, info.height, lite_mat_bgr);
if (!ret) {
MS_PRINT("Init From RGBA error");
}
delete[] (pixels_ptr);
}
AndroidBitmap_unlockPixels(env, srcBitmap);
return ret;
}
bool PreProcessImageData(const LiteMat &lite_mat_bgr, LiteMat *lite_norm_mat_ptr) {
bool ret = false;
LiteMat lite_mat_resize;
LiteMat &lite_norm_mat_cut = *lite_norm_mat_ptr;
ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
if (!ret) {
MS_PRINT("ResizeBilinear error");
return false;
}
LiteMat lite_mat_convert_float;
ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0 / 255.0);
if (!ret) {
MS_PRINT("ConvertTo error");
return false;
}
LiteMat lite_mat_cut;
ret = Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224);
if (!ret) {
MS_PRINT("Crop error");
return false;
}
std::vector<float> means = {0.485, 0.456, 0.406};
std::vector<float> stds = {0.229, 0.224, 0.225};
SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, stds);
return true;
}
/**
* The Java layer reads the model into MappedByteBuffer or ByteBuffer to load the model.
*/
extern "C"
JNIEXPORT jlong JNICALL
Java_com_mindspore_classification_gallery_classify_TrackingMobile_loadModel(JNIEnv *env,
jobject thiz,
jobject model_buffer,
jint num_thread) {
if (nullptr == model_buffer) {
MS_PRINT("error, buffer is nullptr!");
return (jlong) nullptr;
}
jlong bufferLen = env->GetDirectBufferCapacity(model_buffer);
if (0 == bufferLen) {
MS_PRINT("error, bufferLen is 0!");
return (jlong) nullptr;
}
char *modelBuffer = CreateLocalModelBuffer(env, model_buffer);
if (modelBuffer == nullptr) {
MS_PRINT("modelBuffer create failed!");
return (jlong) nullptr;
}
// To create a MindSpore network inference environment.
void **labelEnv = new void *;
MSNetWork *labelNet = new MSNetWork;
*labelEnv = labelNet;
mindspore::lite::Context *context = new mindspore::lite::Context;
context->thread_num_ = num_thread;
context->device_list_[0].device_info_.cpu_device_info_.cpu_bind_mode_ = mindspore::lite::NO_BIND;
context->device_list_[0].device_info_.cpu_device_info_.enable_float16_ = false;
context->device_list_[0].device_type_ = mindspore::lite::DT_CPU;
labelNet->CreateSessionMS(modelBuffer, bufferLen, context);
delete context;
if (labelNet->session() == nullptr) {
MS_PRINT("MindSpore create session failed!.");
delete labelNet;
delete labelEnv;
return (jlong) nullptr;
}
if (model_buffer != nullptr) {
env->DeleteLocalRef(model_buffer);
}
return (jlong) labelEnv;
}
/**
* After the inference environment is successfully created,
* sending a picture to the model and run inference.
*/
extern "C" JNIEXPORT jstring JNICALL
Java_com_mindspore_classification_gallery_classify_TrackingMobile_runNet(JNIEnv *env, jclass type,
jlong netEnv,
jobject srcBitmap) {
LiteMat lite_mat_bgr, lite_norm_mat_cut;
if (!BitmapToLiteMat(env, srcBitmap, &lite_mat_bgr)) {
MS_PRINT("BitmapToLiteMat error");
return NULL;
}
if (!PreProcessImageData(lite_mat_bgr, &lite_norm_mat_cut)) {
MS_PRINT("PreProcessImageData error");
return NULL;
}
ImgDims inputDims;
inputDims.channel = lite_norm_mat_cut.channel_;
inputDims.width = lite_norm_mat_cut.width_;
inputDims.height = lite_norm_mat_cut.height_;
// Get the MindSpore inference environment which created in loadModel().
void **labelEnv = reinterpret_cast<void **>(netEnv);
if (labelEnv == nullptr) {
MS_PRINT("MindSpore error, labelEnv is a nullptr.");
return NULL;
}
MSNetWork *labelNet = static_cast<MSNetWork *>(*labelEnv);
auto mSession = labelNet->session();
if (mSession == nullptr) {
MS_PRINT("MindSpore error, Session is a nullptr.");
return NULL;
}
MS_PRINT("MindSpore get session.");
auto msInputs = mSession->GetInputs();
if (msInputs.size() == 0) {
MS_PRINT("MindSpore error, msInputs.size() equals 0.");
return NULL;
}
auto inTensor = msInputs.front();
float *dataHWC = reinterpret_cast<float *>(lite_norm_mat_cut.data_ptr_);
// Copy dataHWC to the model input tensor.
memcpy(inTensor->MutableData(), dataHWC,
inputDims.channel * inputDims.width * inputDims.height * sizeof(float));
// After the model and image tensor data is loaded, run inference.
auto status = mSession->RunGraph();
if (status != mindspore::lite::RET_OK) {
MS_PRINT("MindSpore run net error.");
return NULL;
}
/**
* Get the MindSpore inference results.
* Return the map of output node name and MindSpore Lite MSTensor.
*/
auto names = mSession->GetOutputTensorNames();
std::unordered_map<std::string, mindspore::tensor::MSTensor *> msOutputs;
for (const auto &name : names) {
auto temp_dat = mSession->GetOutputByTensorName(name);
msOutputs.insert(std::pair<std::string, mindspore::tensor::MSTensor *> {name, temp_dat});
}
std::string resultStr = ProcessRunnetResult(::RET_CATEGORY_SUM,
::labels_name_map, msOutputs);
const char *resultCharData = resultStr.c_str();
return (env)->NewStringUTF(resultCharData);
}
extern "C" JNIEXPORT jboolean JNICALL
Java_com_mindspore_classification_gallery_classify_TrackingMobile_unloadModel(JNIEnv *env,
jclass type,
jlong netEnv) {
MS_PRINT("MindSpore release net.");
void **labelEnv = reinterpret_cast<void **>(netEnv);
if (labelEnv == nullptr) {
MS_PRINT("MindSpore error, labelEnv is a nullptr.");
}
MSNetWork *labelNet = static_cast<MSNetWork *>(*labelEnv);
labelNet->ReleaseNets();
return (jboolean) true;
}
Python
1
https://gitee.com/mindspore/mindspore.git
git@gitee.com:mindspore/mindspore.git
mindspore
mindspore
mindspore
r1.2

Search