# TrafficFlowPrediction-1 **Repository Path**: mirick/TrafficFlowPrediction-1 ## Basic Information - **Project Name**: TrafficFlowPrediction-1 - **Description**: 城市交通道路流量预测 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 5 - **Forks**: 1 - **Created**: 2021-02-15 - **Last Updated**: 2024-10-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Traffic Flow Prediction Traffic Flow Prediction with Neural Networks(SAEs、LSTM、GRU). ## Requirement - Python 3.6 - Tensorflow-gpu 1.5.0 - Keras 2.1.3 - scikit-learn 0.19 ## Train the model **Run command below to train the model:** ``` python train.py --model model_name ``` You can choose "lstm", "gru" or "saes" as arguments. The ```.h5``` weight file was saved at model folder. ## Experiment Data are obtained from the Caltrans Performance Measurement System (PeMS). Data are collected in real-time from individual detectors spanning the freeway system across all major metropolitan areas of the State of California. **Run command below to run the program:** ``` python main.py nihao ```