# ELI5 **Repository Path**: mirrors/ELI5 ## Basic Information - **Project Name**: ELI5 - **Description**: ELI5是一个Python库,允许使用统一API可视化地调试各种机器学习模型 - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: https://www.oschina.net/p/ELI5 - **GVP Project**: No ## Statistics - **Stars**: 4 - **Forks**: 1 - **Created**: 2019-04-04 - **Last Updated**: 2025-09-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ==== ELI5 ==== .. image:: https://img.shields.io/pypi/v/eli5.svg :target: https://pypi.python.org/pypi/eli5 :alt: PyPI Version .. image:: https://travis-ci.org/TeamHG-Memex/eli5.svg?branch=master :target: https://travis-ci.org/TeamHG-Memex/eli5 :alt: Build Status .. image:: https://codecov.io/github/TeamHG-Memex/eli5/coverage.svg?branch=master :target: https://codecov.io/github/TeamHG-Memex/eli5?branch=master :alt: Code Coverage .. image:: https://readthedocs.org/projects/eli5/badge/?version=latest :target: https://eli5.readthedocs.io/en/latest/?badge=latest :alt: Documentation ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. .. image:: https://raw.githubusercontent.com/TeamHG-Memex/eli5/master/docs/source/static/word-highlight.png :alt: explain_prediction for text data .. image:: https://raw.githubusercontent.com/TeamHG-Memex/eli5/master/docs/source/static/gradcam-catdog.png :alt: explain_prediction for image data It provides support for the following machine learning frameworks and packages: * scikit-learn_. Currently ELI5 allows to explain weights and predictions of scikit-learn linear classifiers and regressors, print decision trees as text or as SVG, show feature importances and explain predictions of decision trees and tree-based ensembles. ELI5 understands text processing utilities from scikit-learn and can highlight text data accordingly. Pipeline and FeatureUnion are supported. It also allows to debug scikit-learn pipelines which contain HashingVectorizer, by undoing hashing. * Keras_ - explain predictions of image classifiers via Grad-CAM visualizations. * xgboost_ - show feature importances and explain predictions of XGBClassifier, XGBRegressor and xgboost.Booster. * LightGBM_ - show feature importances and explain predictions of LGBMClassifier and LGBMRegressor. * CatBoost_ - show feature importances of CatBoostClassifier, CatBoostRegressor and catboost.CatBoost. * lightning_ - explain weights and predictions of lightning classifiers and regressors. * sklearn-crfsuite_. ELI5 allows to check weights of sklearn_crfsuite.CRF models. ELI5 also implements several algorithms for inspecting black-box models (see `Inspecting Black-Box Estimators`_): * TextExplainer_ allows to explain predictions of any text classifier using LIME_ algorithm (Ribeiro et al., 2016). There are utilities for using LIME with non-text data and arbitrary black-box classifiers as well, but this feature is currently experimental. * `Permutation importance`_ method can be used to compute feature importances for black box estimators. Explanation and formatting are separated; you can get text-based explanation to display in console, HTML version embeddable in an IPython notebook or web dashboards, a ``pandas.DataFrame`` object if you want to process results further, or JSON version which allows to implement custom rendering and formatting on a client. .. _lightning: https://github.com/scikit-learn-contrib/lightning .. _scikit-learn: https://github.com/scikit-learn/scikit-learn .. _sklearn-crfsuite: https://github.com/TeamHG-Memex/sklearn-crfsuite .. _LIME: https://eli5.readthedocs.io/en/latest/blackbox/lime.html .. _TextExplainer: https://eli5.readthedocs.io/en/latest/tutorials/black-box-text-classifiers.html .. _xgboost: https://github.com/dmlc/xgboost .. _LightGBM: https://github.com/Microsoft/LightGBM .. _Catboost: https://github.com/catboost/catboost .. _Keras: https://keras.io/ .. _Permutation importance: https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html .. _Inspecting Black-Box Estimators: https://eli5.readthedocs.io/en/latest/blackbox/index.html License is MIT. Check `docs `_ for more. ---- .. image:: https://hyperiongray.s3.amazonaws.com/define-hg.svg :target: https://www.hyperiongray.com/?pk_campaign=github&pk_kwd=eli5 :alt: define hyperiongray