# HiDream-I1 **Repository Path**: mirrors/HiDream-I1 ## Basic Information - **Project Name**: HiDream-I1 - **Description**: HiDream-I1 是开源 AI 图像生成大模型,在图像质量、语义理解、艺术表现三大维度刷新行业纪录,实现图像的多风格生成,涵盖动漫、肖像、科幻等场景 - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/hidream-i1 - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2025-04-18 - **Last Updated**: 2025-11-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HiDream-I1 ![HiDream-I1 Demo](assets/demo.jpg) `HiDream-I1` is a new open-source image generative foundation model with 17B parameters that achieves state-of-the-art image generation quality within seconds. For more features and to experience the full capabilities of our product, please visit [https://vivago.ai/](https://vivago.ai/). ## Project Updates - 🌟 **July 16, 2025**: We've open-sourced the updated image editing model [**HiDream-E1-1**](https://github.com/HiDream-ai/HiDream-E1). - 📝 **May 28, 2025**: We've released our technical report [HiDream-I1: A High-Efficient Image Generative Foundation Model with Sparse Diffusion Transformer](https://arxiv.org/abs/2505.22705). - 🚀 **April 28, 2025**: We've open-sourced the instruction-based-image-editing model [**HiDream-E1-Full**](https://github.com/HiDream-ai/HiDream-E1). Experience at [https://huggingface.co/spaces/HiDream-ai/HiDream-E1-Full](https://huggingface.co/spaces/HiDream-ai/HiDream-E1-Full)!. - 🤗 **April 11, 2025**: HiDream is now officially supported in the `diffusers` library. Check out the docs [here](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hidream). - 🤗 **April 8, 2025**: We've launched a Hugging Face Space for **HiDream-I1-Dev**. Experience our model firsthand at [https://huggingface.co/spaces/HiDream-ai/HiDream-I1-Dev](https://huggingface.co/spaces/HiDream-ai/HiDream-I1-Dev)! - 🚀 **April 7, 2025**: We've open-sourced the text-to-image model **HiDream-I1**. ## Models We offer both the full version and distilled models. For more information about the models, please refer to the link under Usage. | Name | Script | Inference Steps | HuggingFace repo | | --------------- | -------------------------------------------------- | --------------- | ---------------------- | | HiDream-I1-Full | [inference.py](./inference.py) | 50 | 🤗 [HiDream-I1-Full](https://huggingface.co/HiDream-ai/HiDream-I1-Full) | | HiDream-I1-Dev | [inference.py](./inference.py) | 28 | 🤗 [HiDream-I1-Dev](https://huggingface.co/HiDream-ai/HiDream-I1-Dev) | | HiDream-I1-Fast | [inference.py](./inference.py) | 16 | 🤗 [HiDream-I1-Fast](https://huggingface.co/HiDream-ai/HiDream-I1-Fast) | ## Quick Start Please make sure you have installed [Flash Attention](https://github.com/Dao-AILab/flash-attention). We recommend CUDA versions 12.4 for the manual installation. ```sh pip install -r requirements.txt pip install -U flash-attn --no-build-isolation ``` Then you can run the inference scripts to generate images: ``` python # For full model inference python ./inference.py --model_type full # For distilled dev model inference python ./inference.py --model_type dev # For distilled fast model inference python ./inference.py --model_type fast ``` > [!NOTE] > The inference script will try to automatically download `meta-llama/Llama-3.1-8B-Instruct` model files. You need to [agree to the license of the Llama model](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on your HuggingFace account and login using `huggingface-cli login` in order to use the automatic downloader. ## Gradio Demo We also provide a Gradio demo for interactive image generation. You can run the demo with: ``` python python gradio_demo.py ``` ## Inference with Diffusers We recommend install Diffusers from source for better compatibility. ```shell pip install git+https://github.com/huggingface/diffusers.git ``` Then you can inference **HiDream-I1** with the following command: ```python import torch from transformers import PreTrainedTokenizerFast, LlamaForCausalLM from diffusers import HiDreamImagePipeline tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") text_encoder_4 = LlamaForCausalLM.from_pretrained( "meta-llama/Meta-Llama-3.1-8B-Instruct", output_hidden_states=True, output_attentions=True, torch_dtype=torch.bfloat16, ) pipe = HiDreamImagePipeline.from_pretrained( "HiDream-ai/HiDream-I1-Full", # "HiDream-ai/HiDream-I1-Dev" | "HiDream-ai/HiDream-I1-Fast" tokenizer_4=tokenizer_4, text_encoder_4=text_encoder_4, torch_dtype=torch.bfloat16, ) pipe = pipe.to('cuda') image = pipe( 'A cat holding a sign that says "HiDream.ai".', height=1024, width=1024, guidance_scale=5.0, # 0.0 for Dev&Fast num_inference_steps=50, # 28 for Dev and 16 for Fast generator=torch.Generator("cuda").manual_seed(0), ).images[0] image.save("output.png") ``` ## Evaluation Metrics ### DPG-Bench | Model | Overall | Global | Entity | Attribute | Relation | Other | | -------------- | --------- | ------ | ------ | --------- | -------- | ----- | | PixArt-alpha | 71.11 | 74.97 | 79.32 | 78.60 | 82.57 | 76.96 | | SDXL | 74.65 | 83.27 | 82.43 | 80.91 | 86.76 | 80.41 | | DALL-E 3 | 83.50 | 90.97 | 89.61 | 88.39 | 90.58 | 89.83 | | Flux.1-dev | 83.79 | 85.80 | 86.79 | 89.98 | 90.04 | 89.90 | | SD3-Medium | 84.08 | 87.90 | 91.01 | 88.83 | 80.70 | 88.68 | | Janus-Pro-7B | 84.19 | 86.90 | 88.90 | 89.40 | 89.32 | 89.48 | | CogView4-6B | 85.13 | 83.85 | 90.35 | 91.17 | 91.14 | 87.29 | | **HiDream-I1** | **85.89** | 76.44 | 90.22 | 89.48 | 93.74 | 91.83 | ### GenEval | Model | Overall | Single Obj. | Two Obj. | Counting | Colors | Position | Color attribution | | -------------- | -------- | ----------- | -------- | -------- | ------ | -------- | ----------------- | | SDXL | 0.55 | 0.98 | 0.74 | 0.39 | 0.85 | 0.15 | 0.23 | | PixArt-alpha | 0.48 | 0.98 | 0.50 | 0.44 | 0.80 | 0.08 | 0.07 | | Flux.1-dev | 0.66 | 0.98 | 0.79 | 0.73 | 0.77 | 0.22 | 0.45 | | DALL-E 3 | 0.67 | 0.96 | 0.87 | 0.47 | 0.83 | 0.43 | 0.45 | | CogView4-6B | 0.73 | 0.99 | 0.86 | 0.66 | 0.79 | 0.48 | 0.58 | | SD3-Medium | 0.74 | 0.99 | 0.94 | 0.72 | 0.89 | 0.33 | 0.60 | | Janus-Pro-7B | 0.80 | 0.99 | 0.89 | 0.59 | 0.90 | 0.79 | 0.66 | | **HiDream-I1** | **0.83** | 1.00 | 0.98 | 0.79 | 0.91 | 0.60 | 0.72 | ### HPSv2.1 benchmark | Model | Averaged | Animation | Concept-art | Painting | Photo | | --------------------- | --------- | --------- | ----------- | -------- | ----- | | Stable Diffusion v2.0 | 26.38 | 27.09 | 26.02 | 25.68 | 26.73 | | Midjourney V6 | 30.29 | 32.02 | 30.29 | 29.74 | 29.10 | | SDXL | 30.64 | 32.84 | 31.36 | 30.86 | 27.48 | | Dall-E3 | 31.44 | 32.39 | 31.09 | 31.18 | 31.09 | | SD3 | 31.53 | 32.60 | 31.82 | 32.06 | 29.62 | | Midjourney V5 | 32.33 | 34.05 | 32.47 | 32.24 | 30.56 | | CogView4-6B | 32.31 | 33.23 | 32.60 | 32.89 | 30.52 | | Flux.1-dev | 32.47 | 33.87 | 32.27 | 32.62 | 31.11 | | stable cascade | 32.95 | 34.58 | 33.13 | 33.29 | 30.78 | | **HiDream-I1** | **33.82** | 35.05 | 33.74 | 33.88 | 32.61 | ## License The code in this repository and the HiDream-I1 models are licensed under [MIT License](./LICENSE). ## Citation ```bibtex @article{hidreami1technicalreport, title={HiDream-I1: A High-Efficient Image Generative Foundation Model with Sparse Diffusion Transformer}, author={Cai, Qi and Chen, Jingwen and Chen, Yang and Li, Yehao and Long, Fuchen and Pan, Yingwei and Qiu, Zhaofan and Zhang, Yiheng and Gao, Fengbin and Xu, Peihan and others}, journal={arXiv preprint arXiv:2505.22705}, year={2025} } ```