# Netron
**Repository Path**: mirrors/Netron
## Basic Information
- **Project Name**: Netron
- **Description**: Netron 是神经网络、深度学习与机器学习模型的可视化工具
- **Primary Language**: JavaScript
- **License**: MIT
- **Default Branch**: main
- **Homepage**: https://www.oschina.net/p/netron
- **GVP Project**: No
## Statistics
- **Stars**: 24
- **Forks**: 8
- **Created**: 2019-05-13
- **Last Updated**: 2025-10-18
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
Netron is a viewer for neural network, deep learning and machine learning models.
Netron supports ONNX, TensorFlow Lite, Core ML, Keras, Caffe, Darknet, PyTorch, TensorFlow.js, Safetensors and NumPy.
Netron has experimental support for TorchScript, torch.export, ExecuTorch, TensorFlow, OpenVINO, RKNN, ncnn, MNN, PaddlePaddle, GGUF and scikit-learn.

## Install
**Browser**: [**Start**](https://netron.app) the browser version.
**macOS**: [**Download**](https://github.com/lutzroeder/netron/releases/latest) the `.dmg` file or run `brew install --cask netron`.
**Linux**: [**Download**](https://github.com/lutzroeder/netron/releases/latest) the `.deb` or `.rpm` file.
**Windows**: [**Download**](https://github.com/lutzroeder/netron/releases/latest) the `.exe` installer or run `winget install -s winget netron`.
**Python**: `pip install netron`, then run `netron [FILE]` or `netron.start('[FILE]')`.
## Models
Sample model files to download or open using the browser version:
* **ONNX**: [squeezenet](https://github.com/onnx/models/raw/main/validated/vision/classification/squeezenet/model/squeezenet1.0-3.onnx) [[open](https://netron.app?url=https://github.com/onnx/models/raw/main/validated/vision/classification/squeezenet/model/squeezenet1.0-3.onnx)]
* **TorchScript**: [traced_online_pred_layer](https://github.com/ApolloAuto/apollo/raw/master/modules/prediction/data/traced_online_pred_layer.pt) [[open](https://netron.app?url=https://github.com/ApolloAuto/apollo/raw/master/modules/prediction/data/traced_online_pred_layer.pt)]
* **TensorFlow Lite**: [yamnet](https://huggingface.co/thelou1s/yamnet/resolve/main/lite-model_yamnet_tflite_1.tflite) [[open](https://netron.app?url=https://huggingface.co/thelou1s/yamnet/blob/main/lite-model_yamnet_tflite_1.tflite)]
* **TensorFlow**: [chessbot](https://github.com/srom/chessbot/raw/master/model/chessbot.pb) [[open](https://netron.app?url=https://github.com/srom/chessbot/raw/master/model/chessbot.pb)]
* **Keras**: [mobilenet](https://github.com/aio-libs/aiohttp-demos/raw/master/demos/imagetagger/tests/data/mobilenet.h5) [[open](https://netron.app?url=https://github.com/aio-libs/aiohttp-demos/raw/master/demos/imagetagger/tests/data/mobilenet.h5)]
* **Core ML**: [exermote](https://github.com/Lausbert/Exermote/raw/master/ExermoteInference/ExermoteCoreML/ExermoteCoreML/Model/Exermote.mlmodel) [[open](https://netron.app?url=https://github.com/Lausbert/Exermote/raw/master/ExermoteInference/ExermoteCoreML/ExermoteCoreML/Model/Exermote.mlmodel)]
* **Darknet**: [yolo](https://github.com/AlexeyAB/darknet/raw/master/cfg/yolo.cfg) [[open](https://netron.app?url=https://github.com/AlexeyAB/darknet/raw/master/cfg/yolo.cfg)]