# TripoSG **Repository Path**: mirrors/TripoSG ## Basic Information - **Project Name**: TripoSG - **Description**: TripoSG 是一个基于 RF 的 MoE Transformer 3D 生成基础模型 - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/triposg - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 2 - **Created**: 2025-04-02 - **Last Updated**: 2025-08-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models
[![Project Page](https://img.shields.io/badge/🏠-Project%20Page-blue.svg)](https://yg256li.github.io/TripoSG-Page/) [![Paper](https://img.shields.io/badge/📑-Paper-green.svg)](https://arxiv.org/abs/2502.06608) [![Model](https://img.shields.io/badge/%F0%9F%A4%97%20Model-TripoSG-yellow.svg)](https://huggingface.co/VAST-AI/TripoSG) [![Online Demo](https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Space-TripoSG-blue)](https://huggingface.co/spaces/VAST-AI/TripoSG) [![Online Demo](https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Space-TripoSG%20scribble-blue)](https://huggingface.co/spaces/VAST-AI/TripoSG-scribble) **By [Tripo](https://www.tripo3d.ai)**
![teaser](assets/doc/triposg_teaser.png) TripoSG is an advanced high-fidelity, high-quality and high-generalizability image-to-3D generation foundation model. It leverages large-scale rectified flow transformers, hybrid supervised training, and a high-quality dataset to achieve state-of-the-art performance in 3D shape generation. ## ✨ Key Features - **High-Fidelity Generation**: Produces meshes with sharp geometric features, fine surface details, and complex structures - **Semantic Consistency**: Generated shapes accurately reflect input image semantics and appearance - **Strong Generalization**: Handles diverse input styles including photorealistic images, cartoons, and sketches - **Robust Performance**: Creates coherent shapes even for challenging inputs with complex topology ## 🔬 Technical Highlights - **Large-Scale Rectified Flow Transformer**: Combines RF's linear trajectory modeling with transformer architecture for stable, efficient training - **Advanced VAE Architecture**: Uses Signed Distance Functions (SDFs) with hybrid supervision combining SDF loss, surface normal guidance, and eikonal loss - **High-Quality Dataset**: Trained on 2 million meticulously curated Image-SDF pairs, ensuring superior output quality - **Efficient Scaling**: Implements architecture optimizations for high performance even at smaller model scales ## 🔥 Updates * [2025-04] Release TripoSG-scribble, a CFG-distilled, 512 token model for fast shape prototyping from scribble+prompt! Try the online demo [here](https://huggingface.co/spaces/VAST-AI/TripoSG-scribble). * [2025-03] Release of TripoSG 1.5B parameter rectified flow model and VAE trained on 2048 latent tokens, along with inference code and interactive demo ## 🔨 Installation Clone the repo: ```bash git clone https://github.com/VAST-AI-Research/TripoSG.git cd TripoSG ``` Create a conda environment (optional): ```bash conda create -n tripoSG python=3.10 conda activate tripoSG ``` Install dependencies: ```bash # pytorch (select correct CUDA version) pip install torch torchvision --index-url https://download.pytorch.org/whl/{your-cuda-version} # other dependencies pip install -r requirements.txt ``` ## 💡 Quick Start Generate a 3D mesh from an image: ```bash python -m scripts.inference_triposg --image-input assets/example_data/hjswed.png --output-path ./output.glb ``` Limiting the number of faces: ```bash python -m scripts.inference_triposg --image-input assets/example_data/hjswed.png --faces 5000 --output-path ./output.glb ``` or from scribble+prompt: ```bash python -m scripts.inference_triposg_scribble --image-input assets/example_scribble_data/cat_with_wings.png --prompt "a cat with wings" --scribble-conf 0.3 --output-path output.glb ``` The required model weights will be automatically downloaded: - TripoSG (image condition) model from [VAST-AI/TripoSG](https://huggingface.co/VAST-AI/TripoSG) → `pretrained_weights/TripoSG` = TripoSG-scribble (scribble+prompt condition) model from [VAST-AI/TripoSG-scribble](https://huggingface.co/VAST-AI/TripoSG-scribble) → `pretrained_weights/TripoSG-scribble` - RMBG model from [briaai/RMBG-1.4](https://huggingface.co/briaai/RMBG-1.4) → `pretrained_weights/RMBG-1.4` ## 💻 System Requirements - CUDA-enabled GPU with at least 8GB VRAM ## 📝 Tips - If you want to use the full VAE module (including the encoder part), you need to uncomment the Line-15 in `triposg/models/autoencoders/autoencoder_kl_triposg.py` and install `torch-cluster`. and run: ``` python -m scripts.inference_vae --surface-input assets/example_data_point/surface_point_demo.npy ``` ## 🤝 Community & Support - **Issues & Discussions**: Use GitHub Issues for bug reports and feature requests. - **Contributing**: We welcome contributions! ## 📚 Citation ``` @article{li2025triposg, title={TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models}, author={Li, Yangguang and Zou, Zi-Xin and Liu, Zexiang and Wang, Dehu and Liang, Yuan and Yu, Zhipeng and Liu, Xingchao and Guo, Yuan-Chen and Liang, Ding and Ouyang, Wanli and others}, journal={arXiv preprint arXiv:2502.06608}, year={2025} } ``` ## ⭐ Acknowledgements We would like to thank the following open-source projects and research works that made TripoSG possible: - [DINOv2](https://github.com/facebookresearch/dinov2) for their powerful visual features - [RMBG-1.4](https://huggingface.co/briaai/RMBG-1.4) for background removal - [🤗 Diffusers](https://github.com/huggingface/diffusers) for their excellent diffusion model framework - [HunyuanDiT](https://github.com/Tencent/HunyuanDiT) for DiT - [FlashVDM](https://github.com/Tencent/FlashVDM) for their lightning vecset decoder - [3DShape2VecSet](https://github.com/1zb/3DShape2VecSet) for 3D shape representation We are grateful to the broader research community for their open exploration and contributions to the field of 3D generation.