3 Star 3 Fork 0

Gitee 极速下载 / adlik

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://github.com/Adlik/Adlik
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

Adlik

Build Status Tests Coverage Bors enabled CII Best Practices

Adlik [ædlik] is an end-to-end optimizing framework for deep learning models. The goal of Adlik is to accelerate deep learning inference process both on cloud and embedded environment.

Adlik schematic diagram

With Adlik framework, different deep learning models can be deployed to different platforms with high performance in a much flexible and easy way.

Using Adlik to Deploy Models in Cloud/Edge/Device

  1. In cloud environment, the compiled model and Adlik Inference Engine should be built as a docker image, and deployed as a container.

  2. In edge environment, Adlik Inference Engine should be deployed as a container. The compiled model should be transferred to edge environment, and the Adlik Inference Engine should automatically update and load model.

  3. In device environment, Adlik Inference Engine and the compiled model should be compiled into a binary file (so or lib). Users who want to run model inference on device should link user defined AI function and Adlik binary file to the execution file, and run directly.

Inference performance of Adlik

We test the inference performance of Adlik on the same CPU or GPU using the simple CNN model (MNIST model), the ResNet50 model, and InceptionV3 with different serving engines. The test performance data of Adlik on different models are as follows:

Contents

Model Optimizer

Model optimizer focuses on specific hardware and runs on it to achieve acceleration. The proposed framework mainly consists of two categories of algorithm components, i.e. pruner and quantizer.

Model Compiler

Model compiler supports several optimizing technologies like pruning, quantization and structural compression, which can be easily used for models developed with TensorFlow, Keras, PyTorch, etc.

Serving Engine

Serving Engine provides deep learning models with optimized runtime based on the deployment environment. Put simply, based on a deep learning model, the users of Adlik can optimize it with model compiler and then deploy it to a certain platform with Adlik serving platform.

Getting Started

Docker images

All Adlik compiler images and serving images are stored in Alibaba Cloud. These images can be downloaded and used directly, users do not need to build the Adlik on Ubuntu. Users can use the compiler images to compile model from H5, CheckPoint, FrozenGraph, ONNX and SavedModel to Openvino, TensorFlow, TensorFlow Lite, TensorRT. Users also can use the serving images for model inference.

Docker pull command:

docker pull docker_image_name:tag

Compiler docker images

The compiler docker images can be used in CPU and GPU. In the CPU, you can compile the model from source type to TensorFlow model, OpenVino model and TensorFlow Lite model. And in the CPU, you can compile the model from source type to TensorFlow model, and TensorRT model. The name and label of compiler mirror are shown below, and the first half of label represents the version of TensorRT, the latter part of label represents the version of CUDA:

registry.cn-beijing.aliyuncs.com/adlik/model-compiler:v1.0

Using model compiler image compile model

  1. Run the image.

    docker run -it --rm -v source_model:/mnt/model
    registry.cn-beijing.aliyuncs.com/adlik/model-compiler:v1.0 bash
  2. Configure the json file or environment variables required to compile the model.

    The config_schema.json describle the json file field information, and for the example, you can reference compiler_json_example.json. For the environment variable field description, see env_field.txt, for the example, reference compiler_env_example.txt.

    Note: The checkpoint model must be given the input and output op names of the model when compiling, and other models can be compiled without the input and output op names of the model.

  3. Compile the model.

    Compilation instructions (json file mode):

    python3 "-c" "import json; import model_compiler as compiler; file=open('/mnt/model/serving_model.json','r');
    request = json.load(file);compiler.compile_model(request); file.close()"

    Compilation instructions (environment variable mode):

    python3 "-c" "import model_compiler.compiler as compiler;compiler.compile_from_env()"

Serving docker images

The serving docker images contains CPU and GPU mirrors. The label of openvino image represents the version of OpenVINO. And for the TensorRT image the first half of label represents the version of TensorRT, the latter part of label represents the version of CUDA. The names and labels of serving mirrors are as follows:

CPU:

registry.cn-beijing.aliyuncs.com/adlik/serving-tflite-cpu:v1.0

registry.cn-beijing.aliyuncs.com/adlik/serving-tensorflow-cpu:v1.0

registry.cn-beijing.aliyuncs.com/adlik/serving-openvino:v1.0

registry.cn-beijing.aliyuncs.com/adlik/serving-libtorch-cpu:v1.0

GPU:

registry.cn-beijing.aliyuncs.com/adlik/serving-tftrt-gpu:v1.0

registry.cn-beijing.aliyuncs.com/adlik/serving-tensorrt:v1.0

registry.cn-beijing.aliyuncs.com/adlik/serving-libtorch-gpu:v1.0

Using the serving images for model inference

  1. Run the mirror and pay attention to mapping out the service port.

    docker run -it --rm -p 8500:8500 -v compiled_model:/model
    registry.cn-beijing.aliyuncs.com/adlik/serving-openvino:v1.0 bash
  2. Load the compiled model in the image and start the service.

    adlik-serving --grpc_port=8500 --http_port=8501 --model_base_path=/model
  3. Install the client wheel package adlik serving package or adlik serving gpu package locally, execute the inference code, and perform inference.

Note: If the service port is not mapped when you run the mirror, you need install the adlik serving package or adlik serving gpu package in the container. Then execute the inference code, and perform inference in the container.

Build

This guide is for building Adlik on Ubuntu systems.

First, install Git and Bazel.

Then, clone Adlik and change the working directory into the source directory:

git clone https://github.com/Adlik/Adlik.git
cd Adlik

Build clients

  1. Install the following packages:

    • python3-setuptools
    • python3-wheel
  2. Build clients:

    bazel build //adlik_serving/clients/python:build_pip_package -c opt
  3. Build pip package:

    mkdir /tmp/pip-packages && bazel-bin/adlik_serving/clients/python/build_pip_package /tmp/pip-packages

Build serving

First, install the following packages:

  • automake
  • libtbb2
  • libtool
  • make
  • python3-six

Build serving with OpenVINO runtime

  1. Install openvino-<VERSION> package from OpenVINO.

  2. Assume the installation path of OpenVINO is /opt/intel/openvino_VERSION, run the following command:

    export INTEL_CVSDK_DIR=/opt/intel/openvino_2022
    export InferenceEngine_DIR=$INTEL_CVSDK_DIR/runtime/cmake
    bazel build //adlik_serving \
        --config=openvino \
        -c opt

Build serving with TensorFlow CPU runtime

  1. Run the following command:

    bazel build //adlik_serving \
        --config=tensorflow-cpu \
        -c opt

Build serving with TensorFlow GPU runtime

Assume building with CUDA version 11.6.

  1. Install the following packages from here and here:

    • cuda-nvprune-11-6
    • cuda-nvtx-11-6
    • cuda-cupti-dev-11-6
    • libcublas-dev-11-6
    • libcudnn8=*+cuda11.6
    • libcudnn8-dev=*+cuda11.6
    • libcufft-dev-11-6
    • libcurand-dev-11-6
    • libcusolver-dev-11-6
    • libcusparse-dev-11-6
    • libnvinfer8=8.4.*+cuda11.6
    • libnvinfer-dev=8.4.*+cuda11.6
    • libnvinfer-plugin7=8.4.*+cuda11.6
    • libnvinfer-plugin-dev=8.4.*+cuda11.6
  2. Run the following command:

    env TF_CUDA_VERSION=11.6 TF_NEED_TENSORRT=1 \
        bazel build //adlik_serving \
            --config=tensorflow-gpu \
            -c opt \
            --incompatible_use_specific_tool_files=false

Build serving with TensorFlow Lite CPU runtime

  1. Run the following command:

    bazel build //adlik_serving \
        --config=tensorflow-lite-cpu \
        -c opt

Build serving with TensorRT runtime

Assume building with CUDA version 11.0.

  1. Install the following packages from here and here:

    • cuda-cupti-dev-11-6
    • cuda-nvml-dev-11-6
    • cuda-nvrtc-11-6
    • libcublas-dev-11-6
    • libcudnn8=*+cuda11.6
    • libcudnn8-dev=*+cuda11.6
    • libcufft-dev-11-0
    • libcurand-dev-11-0
    • libcusolver-dev-11-6
    • libcusparse-dev-11-6
    • libnvinfer8=8.4.*+cuda11.6
    • libnvinfer-dev=8.4.*+cuda11.6
    • libnvonnxparsers8=8.4.*+cuda11.6
    • libnvonnxparsers-dev=8.4.*+cuda11.6
  2. Run the following command:

    env TF_CUDA_VERSION=11.6 \
        bazel build //adlik_serving \
            --config=TensorRT \
            -c opt \
            --action_env=LIBRARY_PATH=/usr/local/cuda-11.0/lib64/stubs \
            --incompatible_use_specific_tool_files=false

Build serving with TF-TRT runtime

Assume building with CUDA version 11.0.

  1. Install the following packages from here and here:

    • cuda-cupti-dev-11-6
    • libcublas-dev-11-6
    • libcudnn8=*+cuda11.6
    • libcudnn8-dev=*+cuda11.6
    • libcufft-dev-11-6
    • libcurand-dev-11-6
    • libcusolver-dev-11-6
    • libcusparse-dev-11-6
    • libnvinfer8=8.4.*+cuda11.6
    • libnvinfer-dev=8.4.*+cuda11.6
    • libnvinfer-plugin8=8.4.*+cuda11.6
    • libnvinfer-plugin-dev=8.4.*+cuda11.6
  2. Run the following command:

    env TF_CUDA_VERSION=11.6 TF_NEED_TENSORRT=1 \
        bazel build //adlik_serving \
            --config=tensorflow-tensorrt \
            -c opt \
            --incompatible_use_specific_tool_files=false

Build serving with Tvm runtime

  1. Install the following packages:

    • build-essential
    • cmake
    • tvm
  2. Run the following command:

    bazel build //adlik_serving \
       --config=tvm \
       -c opt

Build in Docker

The ci/docker/build.sh file can be used to build a Docker images that contains all the requirements for building Adlik. You can build Adlik with the Docker image.

Note: If you build the runtime with GPU in a Docker image, you need to add the CUDA environment variables in the Dockerfile, such as:

ENV NVIDIA_VISIBLE_DEVICES all
ENV NVIDIA_DRIVER_CAPABILITIES compute, utility

Release

The version of the service engine Adlik supports.

Enflame 2.0 TensorFlow 2.10.1 OpenVINO 2022.3.0 TensorRT 8.4.3.1 PaddlePaddle 2.4.0
Keras
TensorFlow
PyTorch
PaddlePaddle
OneFLow
OpenVINO

License

Apache License 2.0

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright 2019 The Adlik Authors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

Adlik 是深度学习模型的端到端优化框架 展开 收起
Apache-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
C/C++
1
https://gitee.com/mirrors/adlik.git
git@gitee.com:mirrors/adlik.git
mirrors
adlik
adlik
master

搜索帮助