3 Star 23 Fork 7

Gitee 极速下载/codegeex2

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://github.com/THUDM/CodeGeeX2
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

🏠 主页|🛠 插件 VS Code, Jetbrains|🤗 模型下载|📄 论文|👋 加入微信开发者交流群

Read this in English
日本語で読む
Lire en Français

⭐️ 最新一代 CodeGeeX4 模型已经正式开源。 The newest CodeGeeX4 has been released.

CodeGeeX2: 更强大的多语言代码生成模型

CodeGeeX2 是多语言代码生成模型 CodeGeeX (KDD’23) 的第二代模型。不同于一代 CodeGeeX(完全在国产华为昇腾芯片平台训练) ,CodeGeeX2 是基于 ChatGLM2 架构加入代码预训练实现,得益于 ChatGLM2 的更优性能,CodeGeeX2 在多项指标上取得性能提升(+107% > CodeGeeX;仅60亿参数即超过150亿参数的 StarCoder-15B 近10%),更多特性包括:

  • 更强大的代码能力:基于 ChatGLM2-6B 基座语言模型,CodeGeeX2-6B 进一步经过了 600B 代码数据预训练,相比一代模型,在代码能力上全面提升,HumanEval-X 评测集的六种编程语言均大幅提升 (Python +57%, C++ +71%, Java +54%, JavaScript +83%, Go +56%, Rust +321%),在Python上达到 35.9% 的 Pass@1 一次通过率,超越规模更大的 StarCoder-15B。
  • 更优秀的模型特性:继承 ChatGLM2-6B 模型特性,CodeGeeX2-6B 更好支持中英文输入,支持最大 8192 序列长度,推理速度较一代 CodeGeeX-13B 大幅提升,量化后仅需6GB显存即可运行,支持轻量级本地化部署。
  • 更全面的AI编程助手:CodeGeeX插件(VS Code, Jetbrains)后端升级,支持超过100种编程语言,新增上下文补全、跨文件补全等实用功能。结合 Ask CodeGeeX 交互式AI编程助手,支持中英文对话解决各种编程问题,包括且不限于代码解释、代码翻译、代码纠错、文档生成等,帮助程序员更高效开发。
  • 更开放的协议:CodeGeeX2-6B 权重对学术研究完全开放,填写登记表申请商业使用。

使用教程

AI编程助手

我们开发了支持 VS Code、 IntelliJ IDEA、PyCharm、GoLand、WebStorm、Android Studio 等IDE的 CodeGeeX 插件。在插件中,可以更直接地体验到 CodeGeeX2 模型在代码生成与补全、添加注释、代码翻译及技术问答方面的能力为开发效率带来的提升。欢迎在IDE中下载 CodeGeeX 插件获得更加全面的AI编程体验,详情见CodeGeeX主页

快速开始

使用transformers快速调用CodeGeeX2-6B

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True, device='cuda')
model = model.eval()

# remember adding a language tag for better performance
prompt = "# language: Python\n# write a bubble sort function\n"
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_length=256, top_k=1)
response = tokenizer.decode(outputs[0])

>>> print(response)
# language: Python
# write a bubble sort function


def bubble_sort(list):
    for i in range(len(list) - 1):
        for j in range(len(list) - 1):
            if list[j] > list[j + 1]:
                list[j], list[j + 1] = list[j + 1], list[j]
    return list


print(bubble_sort([5, 2, 1, 8, 4]))

启动 Gradio DEMO:

python ./demo/run_demo.py

usage: run_demo.py [-h] [--model-path MODEL_PATH] [--example-path EXAMPLE_PATH] [--quantize QUANTIZE]
                   [--chatglm-cpp] [--fastllm] [--n-gpus N_GPUS] [--gpu GPU] [--cpu] [--auth] [--username yourname]
                   [--password yourpassword]
                   [--port PORT] [--listen ADDRESS]

# 若要启用身份验证,请先启用--auth,然后定义--username与--password,如:
python run_demo.py --auth --username user --password password  # 若要监听所有地址请指定 --listen 0.0.0.0

支持使用 ChatGLM.cpp 量化推理加速:

python ./demo/run_demo.py --quantize 4 --chatglm-cpp

启动FAST API:

python ./demo/fastapicpu.py
usage: fastapicpu.py [-h] [--model-path MODEL_PATH] [--listen ADDRESS] [--port PORT] [--workders NUM] [--cpu] [--half] [--quantize QUANTIZE] [--chatglm-cpp]
# --cpu启用cpu --half启用.half()

支持使用 ChatGLM.cpp 量化推理加速,同样添加 --quantize 4 --chatglm-cpp 参数即可。

API使用示例

curl -X POST "http://127.0.0.1:7860" \
    -H 'Content-Type: application/json' \
    -d '{"lang": "Python", "prompt": "# Write a quick sort function"}'

❗️请注意:

  • CodeGeeX2-6B 是一个基座代码生成模型,不具备聊天能力。请前往插件中体验更全面的 Ask CodeGeeX 聊天功能。

  • 在使用 CodeGeeX2-6B 的补全功能时,输入prompt需要遵循特定的格式以获得最好的效果。比如需要在开头加入编程语言标签(# language: Python,请查看完整语言列表),以注释的形式写prompt等。参考run_demo.py中的处理。

  • 如果显卡不支持bfloat16格式,将会输出错误的内容,需要将模型转换成float16格式:

    model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True).half().cuda()
    
  • 如果需要使用多显卡加载模型,可以将以下代码:

    tokenizer = AutoTokenizer.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True)
    model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True, device='cuda')
    model = model.eval()
    

    替换为

    def get_model():
        tokenizer = AutoTokenizer.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True)
        from gpus import load_model_on_gpus
        # gpus文件在demo文件夹中
        model = load_model_on_gpus("THUDM/codegeex2-6b", num_gpus=2)
        model = model.eval()
        return tokenizer, model
    
    tokenizer, model = get_model()
    

代码能力评测

CodeGeeX2 作为一个多语言代码生成基座模型,代码能力较上一代大幅提升,以下是在 HumanEval,HumanEval-X, DS1000 基准上的评测结果(评价指标 Pass@k 定义与论文中一致):

HumanEval (Pass@1,10,100)

Model Pass@1 Pass@10 Pass@100
CodeGen-16B-multi 19.2 34.6 55.2
CodeGeeX-13B 22.9 39.6 60.9
Codex-12B 28.8 46.8 72.3
CodeT5Plus-16B-mono 30.9 51.6 76.7
Code-Cushman-001 33.5 54.3 77.4
LLaMA-65B 23.7 - 79.3
LLaMA2-70B 29.9 - -
CodeGen2.5-7B-mono 33.4 58.4 82.7
StarCoder-15B 33.2 61.0 84.7
CodeGeeX2-6B 35.9 62.6 88.3

Pass@1 使用 n=20, t=0.2, top_p=0.95Pass@10,Pass@100 使用 n=200, t=0.8, top_p=0.95

HumanEval-X (Pass@1)

Model Python C++ Java JavaScript Go Rust Overall
CodeGen-16B-multi 19.2 18.1 15.0 18.4 13.0 1.8 14.2
CodeGeeX-13B 22.9 17.1 20.0 17.6 14.4 4.3 16.0
Replit-code-v1-3B 22.0 20.1 20.1 20.1 12.2 8.6 17.2
CodeGen2.5-7B-multi 30.6 24.3 29.0 27.5 18.9 20.1 25.1
StarCoder-15B 35.5 28.2 31.5 33.2 21.3 17.8 27.9
CodeGeeX2-6B 35.9 29.3 30.8 32.2 22.5 18.1 28.1

Pass@1 使用 n=20, t=0.2, top_p=0.95

以上结果可使用脚本scripts/run_humanevalx.sh复现。环境配置和说明参见评测环境

DS1000 (Pass@1)

Model Matplotlib Numpy Pandas Pytorch SciPy Scikit-learn TensorFlow Overall
# Samples 155 220 291 68 106 115 45 1000
CodeGen-16B-Mono 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
code-cushman-001 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1
Codex-001 41.8 26.6 9.4 9.7 15.0 18.5 17.2 20.2
CodeGeeX2-6B 40.5 25.5 14.5 17.3 19.3 24.0 23.0 23.1
StarCoder-15B 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0
Codex-002 57.0 43.1 26.5 41.8 31.8 44.8 39.3 39.2

Pass@1 使用 n=40, t=0.2, top_p=0.5

以上结果可使用DS1000评测代码复现。

量化推理性能

CodeGeeX2 与上一代相比,对部署更加友好。得益于使用 Multi-Query Attention 和 Flash Attention,推理速度更快,且量化后仅需6GB显存即可运行:

量化

Model FP16/BF16 INT8 INT4
CodeGeeX-13B 26.9 GB 14.7 GB -
CodeGeeX2-6B 13.1 GB 8.2 GB 5.5 GB

基于 PyTorch 2.0 测试,利用torch.nn.functional.scaled_dot_product_attention实现高效的 Attention 计算。

推理

Model 推理速度 (字符/秒)
CodeGeeX-13B 32
CodeGeeX2-6B 94

batch_size=1, max_length=2048,均使用加速框架,测试硬件为GeForce RTX-3090

协议

本仓库的代码依照 Apache-2.0 协议开源,模型的权重的使用则需要遵循 Model License。CodeGeeX2-6B 权重对学术研究完全开放,填写登记表申请商业使用。

引用

如果觉得我们的工作有帮助,欢迎引用以下论文:

@inproceedings{zheng2023codegeex,
  title={CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Benchmarking on HumanEval-X},
  author={Qinkai Zheng and Xiao Xia and Xu Zou and Yuxiao Dong and Shan Wang and Yufei Xue and Zihan Wang and Lei Shen and Andi Wang and Yang Li and Teng Su and Zhilin Yang and Jie Tang},
  booktitle={Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
  pages={5673--5684},
  year={2023}
}
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright Zhengxiao Du Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

CodeGeeX2 是多语言代码生成模型 CodeGeeX (KDD’23) 的第二代模型 展开 收起
README
Apache-2.0
取消

发行版

暂无发行版

近期动态

2年前创建了仓库
不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/mirrors/codegeex2.git
git@gitee.com:mirrors/codegeex2.git
mirrors
codegeex2
codegeex2
main

搜索帮助