# databend **Repository Path**: mirrors/databend ## Basic Information - **Project Name**: databend - **Description**: Databend 是一个具有云原生架构的现代实时数据处理和分析 DBMS,旨在简化数据云 - **Primary Language**: HTML/CSS - **License**: Not specified - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/databend - **GVP Project**: No ## Statistics - **Stars**: 4 - **Forks**: 1 - **Created**: 2021-09-16 - **Last Updated**: 2026-01-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Databend

One Rust Warehouse for Analytics, Search, AI

Snowflake + Elasticsearch + Vector Search — unified in one Rust-powered warehouse. Native on S3.

☁️ Try Cloud🚀 Quick Start📖 Documentation💬 Slack

CI Status Platform

databend ## 💡 Why Databend? Databend is an open-source, **All-in-One multimodal database** built in Rust. It seamlessly unifies **Analytics**, **AI**, **Search**, and **Geo** workloads into a single platform, enabling high-performance processing directly on top of object storage. | | | | :--- | :--- | | **📊 BI & Analytics**
Supercharge your analytics with a high-performance, vectorized SQL query engine. | **✨ Vector Search**
Power AI and RAG applications with built-in, high-speed vector similarity search. | | **📄 JSON Search**
Seamlessly query and analyze semi-structured data with powerful JSON optimization. | **🌍 Geo Search**
Efficiently store, index, and query geospatial data for location intelligence. | | **🔄 ETL Pipeline**
Streamline data ingestion and transformation with built-in Streams and Tasks. | **🌿 Branching**
Create isolated Copy-on-Write branches instantly for dev, test, or experiments. | ![Databend Architecture](https://github.com/user-attachments/assets/288dea8d-0243-4c45-8d18-d4d402b08075) ## ⚡ Quick Start ### 1. Cloud (Recommended) [Start for free on Databend Cloud](https://docs.databend.com/guides/cloud/) - Production-ready in 60 seconds. ### 2. Local (Python) Ideal for development and testing: ```bash pip install databend ``` ```python import databend ctx = databend.SessionContext() ctx.sql("SELECT 'Hello, Databend!'").show() ``` ### 3. Docker Run the full warehouse locally: ```bash docker run -p 8000:8000 datafuselabs/databend ``` ## 🚀 Use Cases - **BI & Analytics**: High-speed SQL on massive datasets. See [Query Processing](https://docs.databend.com/guides/query/sql-analytics). - **AI & Vectors**: Built-in vector search and embedding management. See [Vector Database](https://docs.databend.com/guides/query/vector-db). - **Full-Text Search**: Fast indexing and retrieval on text and semi-structured data (JSON). See [JSON Search](https://docs.databend.com/guides/query/json-search). - **Geospatial**: Advanced geo-analytics and mapping. See [Geospatial Analysis](https://docs.databend.com/guides/query/geo-analytics). - **Stream & Task**: Continuous data ingestion and transformation. See [Real-Time ETL](https://docs.databend.com/guides/query/lakehouse-etl). ## 🤝 Community & Support - [📖 Documentation](https://docs.databend.com/) - [💬 Join Slack](https://link.databend.com/join-slack) - [🐛 Issue Tracker](https://github.com/databendlabs/databend/issues) - [🗺️ Roadmap](https://github.com/databendlabs/databend/issues/14167) **Contributors are immortalized in the `system.contributors` table! 🏆** ## 📄 License [Apache 2.0](licenses/Apache-2.0.txt) + [Elastic 2.0](licenses/Elastic.txt) | [Licensing FAQ](https://docs.databend.com/guides/products/dee/license) ---
Redefining what's possible with data
🌐 Website🐦 Twitter