# mepnet **Repository Path**: mirrors/mepnet ## Basic Information - **Project Name**: mepnet - **Description**: MEPNet 是一个基于学习的框架,可以将人类设计师创造的基于图像的、分步骤的装配手册翻译成机器可理解的指令 - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/mepnet - **GVP Project**: No ## Statistics - **Stars**: 8 - **Forks**: 2 - **Created**: 2022-08-02 - **Last Updated**: 2026-01-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Translating a Visual LEGO Manual to a Machine-Executable Plan This is the PyTorch implementation for the paper: **Translating a Visual LEGO Manual to a Machine-Executable Plan** ![teaser](teaser.png)
[Ruocheng Wang](https://cs.stanford.edu/~rcwang/), [Yunzhi Zhang](https://cs.stanford.edu/~yzzhang/), [Jiayuan Mao](http://jiayuanm.com/), [Chin-Yi Cheng](), [Jiajun Wu](https://jiajunwu.com/)
In European Conference on Computer Vision (ECCV) 2022
[[project]](https://cs.stanford.edu/~rcwang/projects/lego_manual/) # Installation Run the following commands to install necessary dependencies. ``` conda create -n lego_release python=3.9.12 conda activate lego_release pip -r requirements.txt ``` You may need to manually install `pytorch3d 0.5.0` according to this [doc](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md). # Evaluation Download the evaluation datasets and model checkpoints from [here](https://office365stanford-my.sharepoint.com/:f:/g/personal/rcwang_stanford_edu/Eh3SFTyJXY5Iib-qnc55ZnIB05tYvHZ03FgfdRYMpSospw), and unzip them under the root directory of the code. Then simply run ``` bash scripts/eval/eval_all.sh ``` from the root directory. Results will be saved to `results/`. # Training To train our model from scratch, first download the training and validation datasets from [here](https://office365stanford-my.sharepoint.com/:f:/g/personal/rcwang_stanford_edu/Eh3SFTyJXY5Iib-qnc55ZnIB05tYvHZ03FgfdRYMpSospw), and unzip them to `data/datasets/synthetic_train` and `data/datasets/synthetic_val` respectively. After downloading the datasets, preprocess them by running ``` bash scripts/process_dataset.sh ``` Then run the script to train our model ``` bash scripts/train/train_mepnet.sh ``` You can add `--wandb` option in the training script for logging and visualization in [wandb](https://wandb.ai/site). We train our model on 4 Titan RTX GPUs for 5 days. # Acknowledgements Some of our code is built on top of [CycleGAN](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) and [CenterNet](https://github.com/xingyizhou/CenterNet). If you encounter any problem, please don't hesitate to email me at rcwang@stanford.edu or open an issue.