# nano-vllm
**Repository Path**: mirrors/nano-vllm
## Basic Information
- **Project Name**: nano-vllm
- **Description**: Nano vLLM 是一个轻量级的 vLLM 实现,具有快速离线推理能力,代码简洁易读(整个实现不到 1200 行 Python 代码),包含多种优化技术
- **Primary Language**: Python
- **License**: MIT
- **Default Branch**: main
- **Homepage**: https://www.oschina.net/p/nano-vllm
- **GVP Project**: No
## Statistics
- **Stars**: 2
- **Forks**: 2
- **Created**: 2025-06-13
- **Last Updated**: 2026-01-31
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Nano-vLLM
A lightweight vLLM implementation built from scratch.
## Key Features
* 🚀 **Fast offline inference** - Comparable inference speeds to vLLM
* 📖 **Readable codebase** - Clean implementation in ~ 1,200 lines of Python code
* ⚡ **Optimization Suite** - Prefix caching, Tensor Parallelism, Torch compilation, CUDA graph, etc.
## Installation
```bash
pip install git+https://github.com/GeeeekExplorer/nano-vllm.git
```
## Model Download
To download the model weights manually, use the following command:
```bash
huggingface-cli download --resume-download Qwen/Qwen3-0.6B \
--local-dir ~/huggingface/Qwen3-0.6B/ \
--local-dir-use-symlinks False
```
## Quick Start
See `example.py` for usage. The API mirrors vLLM's interface with minor differences in the `LLM.generate` method:
```python
from nanovllm import LLM, SamplingParams
llm = LLM("/YOUR/MODEL/PATH", enforce_eager=True, tensor_parallel_size=1)
sampling_params = SamplingParams(temperature=0.6, max_tokens=256)
prompts = ["Hello, Nano-vLLM."]
outputs = llm.generate(prompts, sampling_params)
outputs[0]["text"]
```
## Benchmark
See `bench.py` for benchmark.
**Test Configuration:**
- Hardware: RTX 4070 Laptop (8GB)
- Model: Qwen3-0.6B
- Total Requests: 256 sequences
- Input Length: Randomly sampled between 100–1024 tokens
- Output Length: Randomly sampled between 100–1024 tokens
**Performance Results:**
| Inference Engine | Output Tokens | Time (s) | Throughput (tokens/s) |
|----------------|-------------|----------|-----------------------|
| vLLM | 133,966 | 98.37 | 1361.84 |
| Nano-vLLM | 133,966 | 93.41 | 1434.13 |
## Star History
[](https://www.star-history.com/#GeeeekExplorer/nano-vllm&Date)