# statsmodels **Repository Path**: mirrors/statsmodels ## Basic Information - **Project Name**: statsmodels - **Description**: Statsmodels: statistical modeling and econometrics in Python - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/statsmodels - **GVP Project**: No ## Statistics - **Stars**: 5 - **Forks**: 0 - **Created**: 2017-04-03 - **Last Updated**: 2025-09-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README .. image:: docs/source/images/statsmodels-logo-v2-horizontal.svg :alt: Statsmodels logo |PyPI Version| |Conda Version| |License| |Azure CI Build Status| |Codecov Coverage| |Coveralls Coverage| |PyPI downloads| |Conda downloads| About statsmodels ================= statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models. Documentation ============= The documentation for the latest release is at https://www.statsmodels.org/stable/ The documentation for the development version is at https://www.statsmodels.org/dev/ Recent improvements are highlighted in the release notes https://www.statsmodels.org/stable/release/ Backups of documentation are available at https://statsmodels.github.io/stable/ and https://statsmodels.github.io/dev/. Main Features ============= * Linear regression models: - Ordinary least squares - Generalized least squares - Weighted least squares - Least squares with autoregressive errors - Quantile regression - Recursive least squares * Mixed Linear Model with mixed effects and variance components * GLM: Generalized linear models with support for all of the one-parameter exponential family distributions * Bayesian Mixed GLM for Binomial and Poisson * GEE: Generalized Estimating Equations for one-way clustered or longitudinal data * Discrete models: - Logit and Probit - Multinomial logit (MNLogit) - Poisson and Generalized Poisson regression - Negative Binomial regression - Zero-Inflated Count models * RLM: Robust linear models with support for several M-estimators. * Time Series Analysis: models for time series analysis - Complete StateSpace modeling framework - Seasonal ARIMA and ARIMAX models - VARMA and VARMAX models - Dynamic Factor models - Unobserved Component models - Markov switching models (MSAR), also known as Hidden Markov Models (HMM) - Univariate time series analysis: AR, ARIMA - Vector autoregressive models, VAR and structural VAR - Vector error correction model, VECM - exponential smoothing, Holt-Winters - Hypothesis tests for time series: unit root, cointegration and others - Descriptive statistics and process models for time series analysis * Survival analysis: - Proportional hazards regression (Cox models) - Survivor function estimation (Kaplan-Meier) - Cumulative incidence function estimation * Multivariate: - Principal Component Analysis with missing data - Factor Analysis with rotation - MANOVA - Canonical Correlation * Nonparametric statistics: Univariate and multivariate kernel density estimators * Datasets: Datasets used for examples and in testing * Statistics: a wide range of statistical tests - diagnostics and specification tests - goodness-of-fit and normality tests - functions for multiple testing - various additional statistical tests * Imputation with MICE, regression on order statistic and Gaussian imputation * Mediation analysis * Graphics includes plot functions for visual analysis of data and model results * I/O - Tools for reading Stata .dta files, but pandas has a more recent version - Table output to ascii, latex, and html * Miscellaneous models * Sandbox: statsmodels contains a sandbox folder with code in various stages of development and testing which is not considered "production ready". This covers among others - Generalized method of moments (GMM) estimators - Kernel regression - Various extensions to scipy.stats.distributions - Panel data models - Information theoretic measures How to get it ============= The main branch on GitHub is the most up to date code https://www.github.com/statsmodels/statsmodels Source download of release tags are available on GitHub https://github.com/statsmodels/statsmodels/tags Binaries and source distributions are available from PyPi https://pypi.org/project/statsmodels/ Binaries can be installed in Anaconda conda install statsmodels Getting the latest code ======================= Installing the most recent nightly wheel ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The most recent nightly wheel can be installed using pip. .. code:: bash python -m pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver Installing from sources ~~~~~~~~~~~~~~~~~~~~~~~ See INSTALL.txt for requirements or see the documentation https://statsmodels.github.io/dev/install.html Contributing ============ Contributions in any form are welcome, including: * Documentation improvements * Additional tests * New features to existing models * New models https://www.statsmodels.org/stable/dev/test_notes for instructions on installing statsmodels in *editable* mode. License ======= Modified BSD (3-clause) Discussion and Development ========================== Discussions take place on the mailing list https://groups.google.com/group/pystatsmodels and in the issue tracker. We are very interested in feedback about usability and suggestions for improvements. Bug Reports =========== Bug reports can be submitted to the issue tracker at https://github.com/statsmodels/statsmodels/issues .. |Azure CI Build Status| image:: https://dev.azure.com/statsmodels/statsmodels-testing/_apis/build/status/statsmodels.statsmodels?branchName=main :target: https://dev.azure.com/statsmodels/statsmodels-testing/_build/latest?definitionId=1&branchName=main .. |Codecov Coverage| image:: https://codecov.io/gh/statsmodels/statsmodels/branch/main/graph/badge.svg :target: https://codecov.io/gh/statsmodels/statsmodels .. |Coveralls Coverage| image:: https://coveralls.io/repos/github/statsmodels/statsmodels/badge.svg?branch=main :target: https://coveralls.io/github/statsmodels/statsmodels?branch=main .. |PyPI downloads| image:: https://img.shields.io/pypi/dm/statsmodels?label=PyPI%20Downloads :alt: PyPI - Downloads :target: https://pypi.org/project/statsmodels/ .. |Conda downloads| image:: https://img.shields.io/conda/dn/conda-forge/statsmodels.svg?label=Conda%20downloads :target: https://anaconda.org/conda-forge/statsmodels/ .. |PyPI Version| image:: https://img.shields.io/pypi/v/statsmodels.svg :target: https://pypi.org/project/statsmodels/ .. |Conda Version| image:: https://anaconda.org/conda-forge/statsmodels/badges/version.svg :target: https://anaconda.org/conda-forge/statsmodels/ .. |License| image:: https://img.shields.io/pypi/l/statsmodels.svg :target: https://github.com/statsmodels/statsmodels/blob/main/LICENSE.txt