# livy **Repository Path**: mirrors_DataDog/livy ## Basic Information - **Project Name**: livy - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-08 - **Last Updated**: 2026-01-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Welcome to Livy =============== **NOTE: This fork is no longer used! We now use upstream Livy. See the Jira card DEI-551 for more details.** Livy is an open source REST interface for interacting with `Apache Spark`_ from anywhere. It supports executing snippets of code or programs in a Spark context that runs locally or in `Apache Hadoop YARN`_. * Interactive Scala, Python and R shells * Batch submissions in Scala, Java, Python * Multiple users can share the same server (impersonation support) * Can be used for submitting jobs from anywhere with REST * Does not require any code change to your programs `Pull requests`_ are welcomed! But before you begin, please check out the `Wiki`_. .. _Apache Spark: http://spark.apache.org .. _Apache Hadoop YARN: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html .. _Pull requests: https://github.com/cloudera/livy/pulls .. _Wiki: https://github.com/cloudera/livy/wiki/Contributing-to-Livy Prerequisites ============= To build Livy, you will need: Debian/Ubuntu: * mvn (from ``maven`` package or maven3 tarball) * openjdk-7-jdk (or Oracle Java7 jdk) * Python 2.6+ * R 3.x Redhat/CentOS: * mvn (from ``maven`` package or maven3 tarball) * java-1.7.0-openjdk (or Oracle Java7 jdk) * Python 2.6+ * R 3.x MacOS: * Xcode command line tools * Oracle's JDK 1.7+ * Maven (Homebrew) * Python 2.6+ * R 3.x To run Livy, you will also need a Spark installation. You can get Spark releases at https://spark.apache.org/downloads.html. Livy requires at least Spark 1.4 and currently only supports Scala 2.10 builds of Spark. Building Livy ============= Livy is built using `Apache Maven`_. To check out and build Livy, run: .. code:: shell git clone git@github.com:cloudera/livy.git cd livy mvn package By default Livy is built against the CDH 5.5 distribution of Spark (based off Spark 1.5.0). You can build Livy against a different version of Spark by setting the ``spark.version`` property: .. code:: shell mvn -Dspark.version=1.6.1 package The version of Spark used when running Livy does not need to match the version used to build Livy. The Livy package itself does not contain a Spark distribution, and will work with any supported version of Spark. .. _Apache Maven: http://maven.apache.org Running Livy ============ In order to run Livy with local sessions, first export these variables: .. code:: shell export SPARK_HOME=/usr/lib/spark export HADOOP_CONF_DIR=/etc/hadoop/conf export CLASSPATH=/usr/lib/hadoop/*:/usr/lib/hadoop-yarn/*:/usr/lib/hadoop/lib/*:/usr/lib/spark/lib/* Then start the server with: .. code:: shell ./bin/livy-server Livy uses the Spark configuration under ``SPARK_HOME`` by default. You can override the Spark configuration by setting the ``SPARK_CONF_DIR`` environment variable before starting Livy. It is strongly recommended to configure Spark to submit applications in YARN cluster mode. That makes sure that user sessions have their resources properly accounted for in the YARN cluster, and that the host running the Livy server doesn't become overloaded when multiple user sessions are running. Livy Configuration ================== Livy uses a few configuration files under configuration the directory, which by default is the ``conf`` directory under the Livy installation. An alternative configuration directory can be provided by setting the ``LIVY_CONF_DIR`` environment variable when starting Livy. The configuration files used by Livy are: * ``livy.conf``: contains the server configuration. The Livy distribution ships with a default configuration file listing available configuration keys and their default values. * ``spark-blacklist.conf``: list Spark configuration options that users are not allowed to override. These options will be restricted to either their default values, or the values set in the Spark configuration used by Livy. * ``log4j.properties``: configuration for Livy logging. Defines log levels and where log messages will be written to. The default configuration will print log messages to stderr. Upgrade from Livy 0.1 ===================== A few things changed between since Livy 0.1 that require manual intervention when upgrading. - Sessions that were active when the Livy 0.1 server was stopped may need to be killed manually. Use the tools from your cluster manager to achieve that (for example, the ``yarn`` command line tool). - The configuration file has been renamed from ``livy-defaults.conf`` to ``livy.conf``. - A few configuration values do not have any effect anymore. Notably: * ``livy.server.session.factory``: this config option has been replaced by the Spark configuration under ``SPARK_HOME``. If you wish to use a different Spark configuration for Livy, you can set ``SPARK_CONF_DIR`` in Livy's environment. To define the default file system root for sessions, set ``HADOOP_CONF_DIR`` to point at the Hadoop configuration to use. The default Hadoop file system will be used. * ``livy.yarn.jar``: this config has been replaced by separate configs listing specific archives for different Livy features. Refer to the default ``livy.conf`` file shipped with Livy for instructions. * ``livy.server.spark-submit``: replaced by the ``SPARK_HOME`` environment variable. Using the Programmatic API ========================== Livy provides a programmatic Java API that allows applications to run code inside Spark without having to maintain a local Spark context. To use the API, add the Cloudera repository to your application's POM: .. code:: xml cloudera.repo https://repository.cloudera.com/artifactory/cloudera-repos Cloudera Repositories false And add the Livy client dependency: .. code:: xml com.cloudera.livy livy-client-http 0.2.0 To be able to compile code that uses Spark APIs, also add the correspondent Spark dependencies. To run Spark jobs within your applications, extend ``com.cloudera.livy.Job`` and implement the functionality you need. Here's an example job that calculates an approximate value for Pi: .. code:: java import java.util.*; import org.apache.spark.api.java.*; import org.apache.spark.api.java.function.*; import com.cloudera.livy.*; public class PiJob implements Job, Function, Function2 { private final int samples; public PiJob(int samples) { this.samples = samples; } @Override public Double call(JobContext ctx) throws Exception { List sampleList = new ArrayList(); for (int i = 0; i < samples; i++) { sampleList.add(i + 1); } return 4.0d * ctx.sc().parallelize(sampleList).map(this).reduce(this) / samples; } @Override public Integer call(Integer v1) { double x = Math.random(); double y = Math.random(); return (x*x + y*y < 1) ? 1 : 0; } @Override public Integer call(Integer v1, Integer v2) { return v1 + v2; } } To submit this code using Livy, create a LivyClient instance and upload your application code to the Spark context. Here's an example of code that submits the above job and prints the computed value: .. code:: java LivyClient client = new LivyClientBuilder() .setURI(new URI(livyUrl)) .build(); try { System.err.printf("Uploading %s to the Spark context...\n", piJar); client.uploadJar(new File(piJar)).get(); System.err.printf("Running PiJob with %d samples...\n", samples); double pi = client.submit(new PiJob(samples)).get(); System.out.println("Pi is roughly: " + pi); } finally { client.stop(true); } To learn about all the functionality available to applications, read the javadoc documentation for the classes under the ``api`` module. Spark Example ============= Here's a step-by-step example of interacting with Livy in Python with the `Requests`_ library. By default Livy runs on port 8998 (which can be changed with the ``livy.server.port`` config option). We’ll start off with a Spark session that takes Scala code: .. code:: shell sudo pip install requests .. code:: python import json, pprint, requests, textwrap host = 'http://localhost:8998' data = {'kind': 'spark'} headers = {'Content-Type': 'application/json'} r = requests.post(host + '/sessions', data=json.dumps(data), headers=headers) r.json() {u'state': u'starting', u'id': 0, u'kind': u'spark'} Once the session has completed starting up, it transitions to the idle state: .. code:: python session_url = host + r.headers['location'] r = requests.get(session_url, headers=headers) r.json() {u'state': u'idle', u'id': 0, u'kind': u'spark'} Now we can execute Scala by passing in a simple JSON command: .. code:: python statements_url = session_url + '/statements' data = {'code': '1 + 1'} r = requests.post(statements_url, data=json.dumps(data), headers=headers) r.json() {u'output': None, u'state': u'running', u'id': 0} If a statement takes longer than a few milliseconds to execute, Livy returns early and provides a statement URL that can be polled until it is complete: .. code:: python statement_url = host + r.headers['location'] r = requests.get(statement_url, headers=headers) pprint.pprint(r.json()) {u'id': 0, u'output': {u'data': {u'text/plain': u'res0: Int = 2'}, u'execution_count': 0, u'status': u'ok'}, u'state': u'available'} That was a pretty simple example. More interesting is using Spark to estimate Pi. This is from the `Spark Examples`_: .. code:: python data = { 'code': textwrap.dedent("""\ val NUM_SAMPLES = 100000; val count = sc.parallelize(1 to NUM_SAMPLES).map { i => val x = Math.random(); val y = Math.random(); if (x*x + y*y < 1) 1 else 0 }.reduce(_ + _); println(\"Pi is roughly \" + 4.0 * count / NUM_SAMPLES) """) } r = requests.post(statements_url, data=json.dumps(data), headers=headers) pprint.pprint(r.json()) {u'id': 1, u'output': {u'data': {u'text/plain': u'Pi is roughly 3.14004\nNUM_SAMPLES: Int = 100000\ncount: Int = 78501'}, u'execution_count': 1, u'status': u'ok'}, u'state': u'available'} Finally, close the session: .. code:: python session_url = 'http://localhost:8998/sessions/0' requests.delete(session_url, headers=headers) .. _Requests: http://docs.python-requests.org/en/latest/ .. _Spark Examples: https://spark.apache.org/examples.html PySpark Example =============== PySpark has the same API, just with a different initial request: .. code:: python data = {'kind': 'pyspark'} r = requests.post(host + '/sessions', data=json.dumps(data), headers=headers) r.json() {u'id': 1, u'state': u'idle'} The Pi example from before then can be run as: .. code:: python data = { 'code': textwrap.dedent(""" import random NUM_SAMPLES = 100000 def sample(p): x, y = random.random(), random.random() return 1 if x*x + y*y < 1 else 0 count = sc.parallelize(xrange(0, NUM_SAMPLES)).map(sample).reduce(lambda a, b: a + b) print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES) """) } r = requests.post(statements_url, data=json.dumps(data), headers=headers) pprint.pprint(r.json()) {u'id': 12, u'output': {u'data': {u'text/plain': u'Pi is roughly 3.136000'}, u'execution_count': 12, u'status': u'ok'}, u'state': u'running'} SparkR Example ============== SparkR has the same API: .. code:: python data = {'kind': 'sparkr'} r = requests.post(host + '/sessions', data=json.dumps(data), headers=headers) r.json() {u'id': 1, u'state': u'idle'} The Pi example from before then can be run as: .. code:: python data = { 'code': textwrap.dedent("""\ n <- 100000 piFunc <- function(elem) { rands <- runif(n = 2, min = -1, max = 1) val <- ifelse((rands[1]^2 + rands[2]^2) < 1, 1.0, 0.0) val } piFuncVec <- function(elems) { message(length(elems)) rands1 <- runif(n = length(elems), min = -1, max = 1) rands2 <- runif(n = length(elems), min = -1, max = 1) val <- ifelse((rands1^2 + rands2^2) < 1, 1.0, 0.0) sum(val) } rdd <- parallelize(sc, 1:n, slices) count <- reduce(lapplyPartition(rdd, piFuncVec), sum) cat("Pi is roughly", 4.0 * count / n, "\n") """) } r = requests.post(statements_url, data=json.dumps(data), headers=headers) pprint.pprint(r.json()) {u'id': 12, u'output': {u'data': {u'text/plain': u'Pi is roughly 3.136000'}, u'execution_count': 12, u'status': u'ok'}, u'state': u'running'} Community ========= * User group: http://groups.google.com/a/cloudera.org/group/livy-user * Dev group: http://groups.google.com/a/cloudera.org/group/livy-dev * JIRA: https://issues.cloudera.org/browse/LIVY * Pull requests: https://github.com/cloudera/livy/pulls REST API ======== GET /sessions ------------- Returns all the active interactive sessions. Response Body ^^^^^^^^^^^^^ +----------+-----------------+------+ | name | description | type | +==========+=================+======+ | sessions | `Session`_ list | list | +----------+-----------------+------+ POST /sessions -------------- Creates a new interative Scala, Python, or R shell in the cluster. Request Body ^^^^^^^^^^^^ +----------------+------------------------------------------------+-----------------+ | name | description | type | +================+================================================+=================+ | kind | The session kind (required) | `session kind`_ | +----------------+------------------------------------------------+-----------------+ | id | Id of new session, if it's empty, a counter | string | | | will be used | | +----------------+------------------------------------------------+-----------------+ | name | spark.app.name | string | +----------------+------------------------------------------------+-----------------+ | proxyUser | User to impersonate when starting the session | string | +----------------+------------------------------------------------+-----------------+ | conf | Spark configuration properties | Map of key=val | +----------------+------------------------------------------------+-----------------+ Response Body ^^^^^^^^^^^^^ The created `Session`_. GET /sessions/{sessionId} ------------------------- Returns the session information. Response ^^^^^^^^ The `Session`_. DELETE /sessions/{sessionId} ---------------------------- Kills the `Session`_ job. GET /sessions/{sessionId}/jobs ------------------------------ Gets jobs from this session. Response Body ^^^^^^^^^^^^^ List of jobs: +------------+------------------------+---------+ | name | description | type | +============+========================+=========+ | id | job id in the session | integer | +------------+------------------------+---------+ | state | Job state | string | +------------+------------------------+---------+ | sparkJobId | Job group ID | string | +------------+------------------------+---------+ | result | Job's result | string | +------------+------------------------+---------+ | error | Job's error | string | +------------+------------------------+---------+ GET /sessions/{sessionId}/logs ------------------------------ Gets the log lines from this session. Request Parameters ^^^^^^^^^^^^^^^^^^ +------+-----------------------------------+------+ | name | description | type | +======+===================================+======+ | from | Offset | int | +------+-----------------------------------+------+ | size | Max number of log lines to return | int | +------+-----------------------------------+------+ Response Body ^^^^^^^^^^^^^ +------+--------------------------+-----------------+ | name | description | type | +======+==========================+=================+ | id | The session id | int | +------+--------------------------+-----------------+ | from | Offset from start of log | int | +------+--------------------------+-----------------+ | size | Number of log lines | int | +------+--------------------------+-----------------+ | log | The log lines | list of strings | +------+--------------------------+-----------------+ GET /sessions/{sessionId}/statements ------------------------------------ Returns all the statements in a session. Response Body ^^^^^^^^^^^^^ +------------+-------------------+------+ | name | description | type | +============+===================+======+ | statements | `statement`_ list | list | +------------+-------------------+------+ POST /sessions/{sessionId}/statements ------------------------------------- Runs a statement in a session. Request Body ^^^^^^^^^^^^ +------+---------------------+--------+ | name | description | type | +======+=====================+========+ | code | The code to execute | string | +------+---------------------+--------+ Response Body ^^^^^^^^^^^^^ The `statement`_ object. POST /sessions/{sessionId}/run-class ------------------------------------ Runs a class in a session. The class should already be in the class path, you may pass a list of jars while creating a session. Request Body ^^^^^^^^^^^^ +-----------+------------------------------------+-----------------+ | name | description | type | +===========+====================================+=================+ | className | The class to run | string | +-----------+------------------------------------+-----------------+ | arguments | Optional list of arguments to pass | list of strings | +-----------+------------------------------------+-----------------+ Response Body ^^^^^^^^^^^^^ +------------+------------------------+---------+ | name | description | type | +============+========================+=========+ | id | job id in the session | integer | +------------+------------------------+---------+ | state | Job state | string | +------------+------------------------+---------+ | sparkJobId | Job group ID | string | +------------+------------------------+---------+ | result | Job's result | string | +------------+------------------------+---------+ | error | Job's error | string | +------------+------------------------+---------+ GET /batches ------------ Returns all the active batch jobs. Response Body ^^^^^^^^^^^^^ +---------+---------------+------+ | name | description | type | +=========+===============+======+ |sessions | `batch`_ list | list | +---------+---------------+------+ POST /batches ------------- Request Body ^^^^^^^^^^^^ +-------------+---------------------------------------------------+-----------------+ | name | description | type | +=============+===================================================+=================+ | id | ID for the new batch job | string | +-------------+---------------------------------------------------+-----------------+ | file | File containing the application to execute | path (required) | +-------------+---------------------------------------------------+-----------------+ | proxyUser | User to impersonate when running the job | string | +-------------+---------------------------------------------------+-----------------+ | className | Application Java/Spark main class | string | +-------------+---------------------------------------------------+-----------------+ | args | Command line arguments for the application | list of strings | +-------------+---------------------------------------------------+-----------------+ | conf | Spark configuration properties | Map of key=val | +-------------+---------------------------------------------------+-----------------+ Response Body ^^^^^^^^^^^^^ The created `Batch`_ object. GET /batches/{batchId} ---------------------- Request Parameters ^^^^^^^^^^^^^^^^^^ +------+---------------------------------+------+ | name | description | type | +======+=================================+======+ | from | Offset | int | +------+---------------------------------+------+ | size | Max number of batches to return | int | +------+---------------------------------+------+ Response Body ^^^^^^^^^^^^^ +-------+-----------------------------+-----------------+ | name | description | type | +=======+=============================+=================+ | id | The batch id | int | +-------+-----------------------------+-----------------+ | state | The state of the batch | `batch`_ state | +-------+-----------------------------+-----------------+ | log | The output of the batch job | list of strings | +-------+-----------------------------+-----------------+ DELETE /batches/{batchId} ------------------------- Kills the `Batch`_ job. GET /batches/{batchId}/log --------------------------- Gets the log lines from this batch. Request Parameters ^^^^^^^^^^^^^^^^^^ +------+-----------------------------------+------+ | name | description | type | +======+===================================+======+ | from | Offset | int | +------+-----------------------------------+------+ | size | Max number of log lines to return | int | +------+-----------------------------------+------+ Response Body ^^^^^^^^^^^^^ +------+--------------------------+-----------------+ | name | description | type | +======+==========================+=================+ | id | The batch id | int | +------+--------------------------+-----------------+ | from | Offset from start of log | int | +------+--------------------------+-----------------+ | size | Number of log lines | int | +------+--------------------------+-----------------+ | log | The log lines | list of strings | +------+--------------------------+-----------------+ REST Objects ============ Session ------- A session represents an interactive shell. +----------------+------------------------------------------+----------------------------+ | name | description | type | +================+==========================================+============================+ | id | The session id | string | +----------------+------------------------------------------+----------------------------+ | kind | Session kind (spark, pyspark, or sparkr) | `session kind`_ (required) | +----------------+------------------------------------------+----------------------------+ | log | The log lines | list of strings | +----------------+------------------------------------------+----------------------------+ | state | The session state | string | +----------------+------------------------------------------+----------------------------+ Session State ^^^^^^^^^^^^^ +-------------+----------------------------------+ | value | description | +=============+==================================+ | not_started | Session has not been started | +-------------+----------------------------------+ | starting | Session is starting | +-------------+----------------------------------+ | idle | Session is waiting for input | +-------------+----------------------------------+ | busy | Session is executing a statement | +-------------+----------------------------------+ | error | Session errored out | +-------------+----------------------------------+ | dead | Session has exited | +-------------+----------------------------------+ Session Kind ^^^^^^^^^^^^ +---------+----------------------------------+ | value | description | +=========+==================================+ | spark | Interactive Scala Spark session | +---------+----------------------------------+ | pyspark | Interactive Python Spark session | +---------+----------------------------------+ | sparkr | Interactive R Spark session | +---------+----------------------------------+ Statement --------- A statement represents the result of an execution statement. +--------+----------------------+---------------------+ | name | description | type | +========+======================+=====================+ | id | The statement id | integer | +--------+----------------------+---------------------+ | state | The execution state | statement state | +--------+----------------------+---------------------+ | output | The execution output | statement output | +--------+----------------------+---------------------+ Statement State ^^^^^^^^^^^^^^^ +-----------+----------------------------------+ | value | description | +===========+==================================+ | running | Statement is currently running | +-----------+----------------------------------+ | available | Statement has a response ready | +-----------+----------------------------------+ | error | Statement failed | +-----------+----------------------------------+ Statement Output ^^^^^^^^^^^^^^^^ +-----------------+-------------------+----------------------------------+ | name | description | type | +=================+===================+==================================+ | status | Execution status | string | +-----------------+-------------------+----------------------------------+ | execution_count | A monotomically | integer | | | increasing number | | +-----------------+-------------------+----------------------------------+ | data | Statement output | An object mapping a mime type to | | | | the result. If the mime type is | | | | ``application/json``, the value | | | | is a JSON value. | +-----------------+-------------------+----------------------------------+ Batch ----- +----------------+------------------+----------------------------+ | name | description | type | +================+==================+============================+ | id | The session id | string | +----------------+------------------+----------------------------+ | log | The log lines | list of strings | +----------------+------------------+----------------------------+ | state | The batch state | string | +----------------+------------------+----------------------------+ License ======= Apache License, Version 2.0 http://www.apache.org/licenses/LICENSE-2.0