# fft_benchmark **Repository Path**: mirrors_IntelPython/fft_benchmark ## Basic Information - **Project Name**: fft_benchmark - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-25 - **Last Updated**: 2026-01-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FFT benchmarks for NumPy\* and SciPy\* This FFF benchmarking framework is useful to measure FFT performance of different NumPy and SciPy versions and vendors. In addition to Python implementation, it is also possible to benchmark native code (MKL DFTI) implementations of these benchmarks with similar command-line interfaces. ## Python benchmarks The following example create benchmarking environment for NumPy and SciPy FFT available from intel channel in conda: ```bash conda create -n fft_benchmark -c https://software.repos.intel.com/python/conda/ -c conda-forge numpy scipy conda activate fft_benchmark ``` To run the FFT benchmark framework in Python, type: ```bash python fft_bench.py [-h] [args] size ``` The framework perform initial warmup call to respective FFT API, and then performs 24 (default) timings for 16 (default) repetitions of FFT computations in the loop. These 24 measurements are aggregated to report minimum, median and maximum timings, which are printed to STDOUT. Other printed lines which start with 'TAG: ' are printed for information purposes. ### Examples Benchmark a 2D out-of-place FFT of a `complex128` array of size `(10000, 10000)`: ```bash python fft_bench.py 10000x10000 ``` Benchmark a 1D in-place FFT of a `float32` array of size `100000000`, print only 5 measurements, only compute the first half of the conjugate-even DFT coefficients, and allow the FFT backend to only use one thread: ```bash python fft_bench.py -P -r -t 1 -d float32 -o 5 100000000 ``` Benchmark a 3D in-place FFT of a `complex64` array of size `1001x203x3005`, printing only 5 measurements, each of which average over 24 inner loop computations: ```bash python fft_bench.py -P -d complex64 -o 5 -i 24 1001x203x3005 ``` ## Native benchmarks ### Compiling on Linux - Source compiler and MKL, then run `make`. ```bash source /path_to_oneapi/compiler/latest/env/vars.sh source /path_to_oneapi/mkl/latest/env/vars.sh make ``` - Run with `./fft_bench [args] size`. ### Compiling on Windows - Source compiler and MKL, then run `win_compile_all.bat`. ``` > "C:\Program Files (x86)\Intel\oneAPI\compiler\latest\env\vars.bat" > "C:\Program Files (x86)\Intel\oneAPI\mkl\latest\env\vars.bat" > win_compile_all.bat ``` - Run with `fft_bench.exe [args] size`. Note that long options are not supported on Windows. Use short options instead. ### Examples Benchmark a 2D out-of-place FFT of a `complex128` array of size `(10000, 10000)`: ```bash ./fft_bench 10000x10000 ``` Benchmark a 1D in-place FFT of a `float32` array of size `100000000`, print only 5 measurements, only compute the first half of the conjugate-even DFT coefficients, allow the FFT backend to only use one thread, and cache the DFTI descriptor between inner loop runs (similar behavior to `mkl_fft` for single dimensional FFTs). ```bash ./fft_bench -P -c -r -t 1 -d float32 -o 5 100000000 ``` Benchmark a 3D in-place FFT of a `complex64` array of size `1001x203x3005`, printing only 5 measurements, each of which average over 24 inner loop computations: ```bash ./fft_bench -P -d complex64 -o 5 -i 24 1001x203x3005 ``` ### Usage ``` usage: ./fft_bench [args] size Benchmark FFT using Intel(R) MKL DFTI. FFT problem arguments: -t, --threads=THREADS use THREADS threads for FFT execution (default: use MKL's default) -d, --dtype=DTYPE use DTYPE as the FFT domain. For a list of understood dtypes, use '-d help'. (default: complex128) -r, --rfft do not copy superfluous harmonics when FFT output is even-conjugate, i.e. for real inputs -P, --in-place allow overwriting the input buffer with the FFT outputs -c, --cached use the same DFTI descriptor for the same outer loop, i.e. "cache" the descriptor Timing arguments: -i, --inner-loops=IL time the benchmark IL times for each printed measurement. Copies are not included in the measurements. (default: 16) -o, --outer-loops=OL print OL measurements. (default: 5) Output arguments: -p, --prefix=PREFIX output PREFIX as the first value in outputs (default: 'Native-C') -H, --no-header do not output CSV header. This can be useful if running multiple benchmarks back-to-back. -h, --help print this message and exit The size argument specifies the input matrix size as a tuple of positive decimal integers, delimited by any non-digit. For example, both (101, 203, 305) and 101x203x305 denote the same 3D FFT. ``` ## See also "[Accelerating Scientific Python with Intel Optimizations](https://proceedings.scipy.org/articles/shinma-7f4c6e7-00f)" by Oleksandr Pavlyk, Denis Nagorny, Andres Guzman-Ballen, Anton Malakhov, Hai Liu, Ehsan Totoni, Todd A. Anderson, Sergey Maidanov. Proceedings of the 16th Python in Science Conference (SciPy 2017), July 10 - July 16, Austin, Texas