# ipyparaview **Repository Path**: mirrors_Kitware/ipyparaview ## Basic Information - **Project Name**: ipyparaview - **Description**: iPython widget for server-side ParaView rendering in Jupyter. - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-09 - **Last Updated**: 2026-01-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # iPyParaView Learn more at: https://developer.nvidia.com/gtc/2020/video/s22111 A widget for interactive server-side ParaView rendering. ## Examples Example notebooks are avaible in the `notebooks` folder. They are designed to give a broad overview of how to use ipyparaview. New users will probably have the best luck jumping in to the Hello_Jupyter-ParaView.ipynb notebook, which demonstrates basic usage and setting up the ParaView display. The Iso-Surfaces_with_RTX.ipynb notebook demonstrates more advanced usage, with more extensive manipulation of the render state and interactive control. The Dask-MPI_Volume_Render.ipynb notebook demonstrates how to use multi-node rendering by running PVRenderActors on a Dask-MPI cluster. ## Installation There are two ways to install ipyparaview, both of which rely on pip. The lightweight method is to point pip at the GitHub repo, and then enable the notebook extension (note: this will not enable the extension for Jupyter lab). The more fully-featured method is to download a copy of the source code and install from the local version. We typically run inside of a conda environment (see conda setup step in instructions for the full-feature install with conda) ##### Lightweight quick install $ pip install git+https://github.com/Kitware/ipyparaview.git $ jupyter nbextension enable --py --sys-prefix ipyparaview From within a conda environment: $ conda env create -f environment.yml $ conda activate ipy_pv_dev $ ./rebuild.sh ##### Fully-featured local source installation $ git clone https://github.com/NVIDIA/ipyparaview.git $ cd ipyparaview $ ./build.sh ##### Fully-featured local source installation (with conda) $ git clone https://github.com/Kitware/ipyparaview.git $ cd ipyparaview $ pip install -e . $ jupyter nbextension install --py --symlink --sys-prefix ipyparaview $ jupyter nbextension enable --py --sys-prefix ipyparaview $ jupyter labextension install js ## Running Within a conda environment $ conda activate ipy_pv_dev $ export LD_LIBRARY_PATH=$PVPATH/lib/ $ export PYTHONPATH=$PVPATH/lib/python3.7/site-packages/ $ jupyter notebook Or from a Docker container, create an image by: $ docker build -t banesullivan/ipyparaview . Or download a pre-built image by: $ docker pull banesullivan/ipyparaview Then run that container by: $ docker run -p 8877:8877 banesullivan/ipyparaview ## Demos Our `conda` environment installs all required dependencies for our demos. ``` conda activate ipy_pv_dev export PYTHONPATH=$PVPATH/lib/python3.7/site-packages/ # or `conda install paraview` cd notebooks/ jupyter notebook ```