# MTLRecSys **Repository Path**: mirrors_LLNL/MTLRecSys ## Basic Information - **Project Name**: MTLRecSys - **Description**: multitask recommender systems intended for cancer drug response prediction, but now generalizable to a wide range of recommendation problems. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-03 - **Last Updated**: 2026-01-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Multitask Learning For Cancer A project with the purpose of adapting multitask and state of the art ML recommender algorithms to predict cancer drug response. ## Examples and Blogs * Example notebooks are in pipeline/walkthroughs * These were used to create figures * to see an example experiment look at pipeline/experiments/ * MTL example * STL example ## Getting Started 1. Navigate to root directory, where environment.yml is located 2. conda env create -f environment.yml 3. conda activate mtl4c_env 4. Verify that environment installed correctly with conda env list ## Testing * to run tests, go into pipeline directory and run pytest --cov=methods test_methods.py ## Documentation * see mtl4cdocumentation.pdf ## Experiments * stored in pipeline/experiments/ * see the readme in there for experiment descriptions # Authors - Alexander Ladd (ladd12@llnl.gov) - André R. Gonçalves (goncalves1@llnl.gov) - Braden C. Soper (soper3@llnl.gov) - David P. Widemann (widemann1@llnl.gov) - Pryiadip Ray (ray34@llnl.gov) # CP Number: CP02373 # Dependencies and Licensing 1. gpytorch (MIT) 2. pytorch (BSD) 3. keras (MIT) 4. Tensorflow (Apache License 2.0) 5. Surprise (BSD-3-Clause License) 6. SciKit Learn (New BSD License)