# DiffusionNFT **Repository Path**: mirrors_NVlabs/DiffusionNFT ## Basic Information - **Project Name**: DiffusionNFT - **Description**: DiffusionNFT: Online Diffusion Reinforcement with Forward Process - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-23 - **Last Updated**: 2025-09-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

DiffusionNFT:
Online Diffusion Reinforcement with Forward Process

     
## Algorithm Overview **DiffusionNFT** is a new online reinforcement learning paradigm for diffusion models that performs policy optimization directly on the **forward diffusion process**. - **Solver-Agnostic:** Unlike GRPO, DiffusionNFT is compatible with any black-box sampler (e.g., high-order ODE solvers) throughout data collection. - **Theoretically Consistent & Memory Efficient:** By operating on the forward process, DiffusionNFT maintains forward consistency and only requires clean images for training, instead of the entire sampling trajectories. - **Simple & Compatible:** DiffusionNFT is built on the standard flow-matching objective, making it easy to integrate into existing diffusion training codebases.

Result

The DiffusionNFT pipeline consists of: 1. **Data Collection:** The current sampling policy $v^\text{old}$ generates images, which are evaluated by a reward function. 2. **Conceptual Data Split:** Images are conceptually split into positive and negative subsets based on their rewards. 3. **Forward Process Optimization:** The training policy $v_\theta$ is optimized on noised versions of the collected images. Our novel loss function uses the rewards to weigh between implicit positive and negative objectives, directly integrating the reinforcement signal into the model's parameters.

DiffusionNFT Method

## Environment Setup Our implementation is based on the [Flow-GRPO](https://github.com/yifan123/flow_grpo) codebase, with most environments aligned. Clone this repository and install packages by: ```bash git clone https://github.com/NVlabs/DiffusionNFT.git cd DiffusionNFT conda create -n DiffusionNFT python=3.10.16 pip install torch==2.6.0 torchvision==0.21.0 --index-url https://download.pytorch.org/whl/cu126 pip install -e . ``` ## Reward Preparation Our supported reward models include [GenEval](https://github.com/djghosh13/geneval), [OCR](https://github.com/PaddlePaddle/PaddleOCR), [PickScore](https://github.com/yuvalkirstain/PickScore), [ClipScore](https://github.com/openai/CLIP), [HPSv2.1](https://github.com/tgxs002/HPSv2), [Aesthetic](https://github.com/christophschuhmann/improved-aesthetic-predictor), [ImageReward](https://github.com/zai-org/ImageReward) and [UnifiedReward](https://github.com/CodeGoat24/UnifiedReward). We additionally support `HPSv2.1` on top of FlowGRPO, and simplify `GenEval` from remote server to local. ### Checkpoints Downloading ```bash mkdir reward_ckpts cd reward_ckpts # Aesthetic wget https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/refs/heads/main/sac+logos+ava1-l14-linearMSE.pth # GenEval wget https://download.openmmlab.com/mmdetection/v2.0/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco_20220504_001756-743b7d99.pth # ClipScore wget https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K/resolve/main/open_clip_pytorch_model.bin # HPSv2.1 wget https://huggingface.co/xswu/HPSv2/resolve/main/HPS_v2.1_compressed.pt cd .. ``` ### Reward Environments ```bash # GenEval pip install -U openmim mim install mmengine git clone https://github.com/open-mmlab/mmcv.git cd mmcv; git checkout 1.x MMCV_WITH_OPS=1 FORCE_CUDA=1 pip install -e . -v cd .. git clone https://github.com/open-mmlab/mmdetection.git cd mmdetection; git checkout 2.x pip install -e . -v cd .. pip install open-clip-torch clip-benchmark # OCR pip install paddlepaddle-gpu==2.6.2 pip install paddleocr==2.9.1 pip install python-Levenshtein # HPSv2.1 pip install hpsv2x==1.2.0 # ImageReward pip install image-reward pip install git+https://github.com/openai/CLIP.git ``` For `UnifiedReward`, we deploy the reward service using sglang. To avoid conflicts, first create a new environment and install sglang with: ```bash pip install "sglang[all]" ``` Then launch the service with: ```bash python -m sglang.launch_server --model-path CodeGoat24/UnifiedReward-7b-v1.5 --api-key flowgrpo --port 17140 --chat-template chatml-llava --enable-p2p-check --mem-fraction-static 0.85 ``` Memory usage can be reduced by lowering `--mem-fraction-static`, limiting `--max-running-requests`, and increasing `--data-parallel-size` or `--tensor-parallel-size`. ## Training Unlike FlowGRPO, we use `torchrun` instead of `accelerate` to distribute training. The default configuration file `config/nft.py` is set for 8 GPUs, and you can customize it as needed. Single-node training example: ```bash export WANDB_API_KEY=xxx export WANDB_ENTITY=xxx # GenEval torchrun --nproc_per_node=8 scripts/train_nft_sd3.py --config config/nft.py:sd3_geneval # Multi-reward torchrun --nproc_per_node=8 scripts/train_nft_sd3.py --config config/nft.py:sd3_multi_reward ``` ## Evaluation We provide an inference script for loading LoRA checkpoints and running evaluation. ```bash # Hugging Face LoRA checkpoint, w/ CFG torchrun --nproc_per_node=8 scripts/evaluation.py \ --lora_hf_path "jieliu/SD3.5M-FlowGRPO-GenEval" \ --model_type sd3 \ --dataset geneval \ --guidance_scale 4.5 \ --mixed_precision fp16 \ --save_images # Local LoRA checkpoint, w/o CFG torchrun --nproc_per_node=8 scripts/evaluation.py \ --checkpoint_path "logs/nft/sd3/geneval/checkpoints/checkpoint-1018" \ --model_type sd3 \ --dataset geneval \ --guidance_scale 1.0 \ --mixed_precision fp16 \ --save_images ``` The `--dataset` flag supports `geneval`, `ocr`, `pickscore`, and `drawbench`. ## Acknowledgement We thank the [Flow-GRPO](https://github.com/yifan123/flow_grpo) project for providing the awesome open-source diffusion RL codebase. ## Citation ``` @article{zheng2025diffusionnft, title={DiffusionNFT: Online Diffusion Reinforcement with Forward Process}, author={Zheng, Kaiwen and Chen, Huayu and Ye, Haotian and Wang, Haoxiang and Zhang, Qinsheng and Jiang, Kai and Su, Hang and Ermon, Stefano and Zhu, Jun and Liu, Ming-Yu}, journal={arXiv preprint arXiv:2509.16117}, year={2025} } ```