# NP-CVP-MVSNet **Repository Path**: mirrors_NVlabs/NP-CVP-MVSNet ## Basic Information - **Project Name**: NP-CVP-MVSNet - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-07-20 - **Last Updated**: 2025-09-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![NVIDIA Source Code License](https://img.shields.io/badge/license-NSCL-blue.svg)](https://github.com/NVlabs/NP-CVP-MVSNet/blob/master/LICENSE) ## NP-CVP-MVSNet: Non-parametric Depth Distribution Modelling based Depth Inference for Multi-view Stereo

Figure 1: NP-CVP-MVSNet can produce sharp and accurate depth estimation on boundary regions.

Non-parametric Depth Distribution Modelling based Depth Inference for Multi-view Stereo
[Jiayu Yang](https://jiayuyang.me), [Jose M. Alvarez](https://rsu.data61.csiro.au/people/jalvarez/), and [Miaomiao Liu](http://users.cecs.anu.edu.au/~mliu/).
CVPR 2022. This repository contains the official Pytorch implementation for NP-CVP-MVSNet. NP-CVP-MVSNet is a non-parametric depth distribution modeling based multi-view depth estimation network. It can achieve superior performance on small objects and boundary regions, see Figure 1. ## Installation This code is tested on following environment. * CUDA 11.3 * PyTorch 1.10.1 * [torchsparse](https://github.com/mit-han-lab/torchsparse) 1.4.0 Follow the instructions in [here](https://pytorch.org/get-started/previous-versions/) to install PyTorch. Follow the instructions in [here](https://github.com/mit-han-lab/torchsparse) to install torchsparse. ## Data preparation Download the pre-processed DTU dataset from [CVP-MVSNet](https://github.com/JiayuYANG/CVP-MVSNet). Extract it into ```dataset/dtu-train-512/``` folder. ## Training We provide default parameters to train a 4 scale NP-CVP-MVSNet on the DTU dataset in the ```train.sh``` Modify training parameters and model parameters in ```train.sh``` and start training by ``` sh train.sh ``` Checkpoints will be saved in ```CKPT_DIR``` folder. ## Inference Specify the ```TASK_NAME``` and ```CKPT_NAME``` in ```eval.sh``` to use the checkpoint you generated for validation or testing. Inference depth map by ``` sh eval.sh ``` Depth maps will be generated in ```OUT_DIR```. ## Depth Fusion [fusibile](https://github.com/kysucix/fusibile) can be used to fuse all depth maps into a point cloud for each scan. We use the modified version of fusibile provided by [MVSNet](https://github.com/YoYo000/MVSNet). Check Yao yao's modified version of fusibile. ``` git clone https://github.com/YoYo000/fusibile ``` Compile fusibile. ``` cd fusibile cmake . make ``` Link fusibile executeable ``` ln -s FUSIBILE_EXE_PATH NP-CVP-MVSNet/fusion/fusibile ``` Scripts to launch fusibile for depth fusion can be found in ```fusion``` directory. Set the correct path in ```fusion.sh``` and start depth fusion with following command. ``` sh fusion.sh ``` When finish, you can find point cloud ```*.ply``` files in ```DEPTH_FOLDER``` folder. [Meshlab](https://www.meshlab.net/) can be used to display the generated point cloud ```.ply``` files. ## Evaluation The official Matlab evaluation code and ground-truth point cloud can be downloaded from [DTU website](https://roboimagedata.compute.dtu.dk/?page_id=36). The official evaluation code will compare the generated validation or testing point cloud ```.ply``` files with ground-truth point cloud provided by DTU and report the *accuracy* and *completeness* score, shown in Table 1. Overall score is the arithematic average of mean *accuracy* and mean *completeness* for all scans.

Table 1: NP-CVP-MVSNet achieved best overall reconstruction quality on DTU dataset

## License Please check the LICENSE file. NP-CVP-MVSNet may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [researchinquiries@nvidia.com](mailto:researchinquiries@nvidia.com). ## Citation ``` @article{yang2022npcvp, title={Non-parametric Depth Distribution Modelling based Depth Inference for Multi-view Stereo}, author={Yang, Jiayu and Alvarez, Jose M and Liu, Miaomiao}, journal={CVPR}, year={2022} } ```