# imaginaire **Repository Path**: mirrors_NVlabs/imaginaire ## Basic Information - **Project Name**: imaginaire - **Description**: 英伟达开源的一个新的 PyTorch 库「Imaginaire」,共包含 9 种英伟达开发的图像及视频合成方法 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 0 - **Created**: 2020-08-18 - **Last Updated**: 2025-10-11 ## Categories & Tags **Categories**: image-processing **Tags**: None ## README imaginaire_logo.svg # Imaginaire ### [Docs](http://deepimagination.cc/) | [License](LICENSE.md) | [Installation](INSTALL.md) | [Model Zoo](MODELZOO.md) Imaginaire is a [pytorch](https://pytorch.org/) library that contains optimized implementation of several image and video synthesis methods developed at [NVIDIA](https://www.nvidia.com/en-us/). ## License Imaginaire is released under [NVIDIA Software license](LICENSE.md). For commercial use, please consult [NVIDIA Research Inquiries](https://www.nvidia.com/en-us/research/inquiries/). ## What's inside? [![IMAGE ALT TEXT](http://img.youtube.com/vi/jgTX5OnAsYQ/0.jpg)](http://www.youtube.com/watch?v=jgTX5OnAsYQ "Imaginaire") We have a tutorial for each model. Click on the model name, and your browser should take you to the tutorial page for the project. ### Supervised Image-to-Image Translation |Algorithm Name | Feature | Publication | |:--------------------------------------------|:----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:| |[pix2pixHD](projects/pix2pixhd/README.md) | Learn a mapping that converts a semantic image to a high-resolution photorealistic image. | [Wang et. al. CVPR 2018](https://arxiv.org/abs/1711.11585) | |[SPADE](projects/spade/README.md) | Improve pix2pixHD on handling diverse input labels and delivering better output quality. | [Park et. al. CVPR 2019](https://arxiv.org/abs/1903.07291) | ### Unsupervised Image-to-Image Translation |Algorithm Name | Feature | Publication | |:--------------------------------------------|:----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:| |[UNIT](projects/unit/README.md) | Learn a one-to-one mapping between two visual domains. | [Liu et. al. NeurIPS 2017](https://arxiv.org/abs/1703.00848) | |[MUNIT](projects/munit/README.md) | Learn a many-to-many mapping between two visual domains. | [Huang et. al. ECCV 2018](https://arxiv.org/abs/1804.04732) | |[FUNIT](projects/funit/README.md) | Learn a style-guided image translation model that can generate translations in unseen domains. | [Liu et. al. ICCV 2019](https://arxiv.org/abs/1905.01723) | |[COCO-FUNIT](projects/coco_funit/README.md) | Improve FUNIT with a content-conditioned style encoding scheme for style code computation. | [Saito et. al. ECCV 2020](https://arxiv.org/abs/2007.07431) | ### Video-to-video Translation |Algorithm Name | Feature | Publication | |:--------------------------------------------|:----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:| |[vid2vid](projects/vid2vid/README.md) | Learn a mapping that converts a semantic video to a photorealistic video. | [Wang et. al. NeurIPS 2018](https://arxiv.org/abs/1808.06601) | |[fs-vid2vid](projects/fs_vid2vid/README.md) | Learn a subject-agnostic mapping that converts a semantic video and an example image to a photoreslitic video. | [Wang et. al. NeurIPS 2019](https://arxiv.org/abs/1808.06601) | ### World-to-world Translation |Algorithm Name | Feature | Publication | |:--------------------------------------------|:----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:| |[wc-vid2vid](projects/wc_vid2vid/README.md) | Improve vid2vid on view consistency and long-term consistency. | [Mallya et. al. ECCV 2020](https://arxiv.org/abs/2007.08509) | |[GANcraft](projects/gancraft/README.md) | Convert semantic block worlds to realistic-looking worlds. | [Hao et. al. ICCV 2021](https://arxiv.org/abs/2104.07659) |