# PASSL **Repository Path**: mirrors_PaddlePaddle/PASSL ## Basic Information - **Project Name**: PASSL - **Description**: PASSL包含 SimCLR,MoCo v1/v2,BYOL,CLIP,PixPro,simsiam, SwAV, BEiT,MAE 等图像自监督算法以及 Vision Transformer,DEiT,Swin Transformer,CvT,T2T-ViT,MLP-Mixer,XCiT,ConvNeXt,PVTv2 等基础视觉算法 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2021-01-29 - **Last Updated**: 2025-09-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ⚙️ 简体中文 | [English](./README.md)

## 介绍 PASSL 是一个基于 PaddlePaddle 的视觉库,用于使用 PaddlePaddle 进行最先进的视觉自监督学习研究。PASSL旨在加速自监督学习的研究周期:**从设计一个新的自监督任务到评估所学的表征**。 PASSL 主要特性: - 自监督前沿算法实现 PASSL 实现了多种前沿自监督学习算法,包括不限于 [SimCLR](https://arxiv.org/abs/2002.05709)、[MoCo(v1)](https://arxiv.org/abs/1911.05722)、[MoCo(v2)](https://arxiv.org/abs/1911.05722)、[MoCo-BYOL](docs/Train_MoCo-BYOL_model.md)、[CLIP](https://arxiv.org/abs/2103.00020)、[BYOL](https://arxiv.org/abs/2006.07733)、[BEiT](https://arxiv.org/abs/2106.08254)。同时支持有监督分类训练。 - 模块化设计 易于建立新的任务和重用其他任务的现有组件 (Trainer, models and heads, data transforms, etc.) 🛠️ PASSL 的最终目标是利用自监督学习为下游任务提供更合适的预训练权重,同时大幅度降低数据标注成本。 **📣 Recent Update:** * (2022-2-9): 重构 README * 🔥 Now:PASSL 目前正在进行框架重构 ## 模型库 * **Self-Supervised Learning Models** PASSL 实现了一系列自监督学习算法,更具体的使用文档请参阅 **Document** | | Epochs | Official results | PASSL results | Backbone | Model | Document | | --------- | ------ | ---------------- | ------------- | --------- | ------------------------------------------------------------ | ------------------------------------------------ | | MoCo | 200 | 60.6 | 60.64 | ResNet-50 | [download](https://passl.bj.bcebos.com/models/moco_v1_r50_e200_ckpt.pdparams) | [Train MoCo](docs/Train_MoCo_model.md) | | SimCLR | 100 | 64.5 | 65.3 | ResNet-50 | [download](https://passl.bj.bcebos.com/models/simclr_r50_ep100_ckpt.pdparams) | [Train SimCLR](docs/Train_SimCLR_model.md) | | MoCo v2 | 200 | 67.7 | 67.72 | ResNet-50 | [download](https://passl.bj.bcebos.com/models/moco_v2_r50_e200_ckpt.pdparams) | [Train MoCo](docs/Train_MoCo_model.md) | | MoCo-BYOL | 300 | 71.56 | 72.10 | ResNet-50 | [download](https://passl.bj.bcebos.com/models/mocobyol_r50_ep300_ckpt.pdparams) | [Train MoCo-BYOL](docs/Train_MoCo-BYOL_model.md) | | BYOL | 300 | 72.50 | 71.62 | ResNet-50 | [download](https://passl.bj.bcebos.com/models/byol_r50_300.pdparams) | [Train BYOL](docs/Train_BYOL_model.md) | | PixPro | 100 | 55.1(fp16) | 57.2(fp32) | ResNet-50 | [download](https://passl.bj.bcebos.com/models/pixpro_r50_ep100_no_instance_with_linear.pdparams) | [Train PixPro](docs/Train_PixPro_model.md) | | SimSiam | 100 | 68.3 | 68.4 | ResNet-50 | [download](https://drive.google.com/file/d/1kaAm8-tlvB570kzI4fo9h4dwGQFf_4FE/view?usp=sharing) | [Train SimSiam](docs/Train_SimSiam_model.md) | | DenseCL | 200 | 63.62 | 63.37 | ResNet-50 | [download](https://drive.google.com/file/d/1RWPO_g-fNJv8FsmCZ3LUbPTgPwtx-ybZ/view?usp=sharing) | [Train PixPro](docs/Train_DenseCL_model.md) | | SwAV | 100 | 72.1 | 72.4 | ResNet-50 | [download](https://drive.google.com/file/d/1budFSoQqZz1Idyej-R4E6kUnL8CGtdyu/view?usp=sharing) | [Train SwAV](docs/Train_SwAV_model.md) | > Benchmark Linear Image Classification on ImageNet-1K. Comming Soon:更多的算法实现已经在我们的计划中 ... * **Classification Models** PASSL 实现了视觉 Transformer 等具有影响力的图像分类算法,并提供了相应的预训练权重。旨在支持自监督、多模态、大模型算法的建设和研究。更多使用细节请参阅 [Classification_Models_Guide.md](docs/Classification_Models_Guide.md) | | Detail | Tutorial | | ---------------- | --------------------------- | ------------------------------------------------------------ | | ViT | / | [PaddleEdu](https://aistudio.baidu.com/aistudio/projectdetail/2293050) | | Swin Transformer | / | [PaddleEdu](https://aistudio.baidu.com/aistudio/projectdetail/2280436) | | CaiT | [config](configs/cait) | [PaddleFleet](https://aistudio.baidu.com/aistudio/projectdetail/3401469) | | T2T-ViT | [config](configs/t2t_vit) | [PaddleFleet](https://aistudio.baidu.com/aistudio/projectdetail/3401348) | | CvT | [config](configs/cvt) | [PaddleFleet](https://aistudio.baidu.com/aistudio/projectdetail/3401386) | | BEiT | [config](configs/beit) | [unofficial](https://aistudio.baidu.com/aistudio/projectdetail/2417241) | | MLP-Mixer | [config](configs/mlp_mixer) | [PaddleFleet](https://aistudio.baidu.com/aistudio/projectdetail/3401295) | | ConvNeXt | [config](configs/convnext) | [PaddleFleet](https://aistudio.baidu.com/aistudio/projectdetail/3407445) | 🔥 PASSL 提供了详细的算法剖析,具体请参阅 **Tutorial**。 ## 安装 请参阅 [INSTALL.md](https://github.com/PaddlePaddle/PASSL/blob/main/docs/INSTALL.md) 进行安装 ## 快速开始 请参阅 [GETTING_STARTED.md](https://github.com/PaddlePaddle/PASSL/blob/main/docs/GETTING_STARTED.md) 了解 PASSL 的基本用法 ## Awesome SSL 自监督学习 (Self-Supervised Learning, SSL) 是一个发展十分迅速的领域,这里列出一些具有影响力的 Paper 供研究使用。PASSL 会争取实现具有应用潜力的自监督算法 * *[Masked Feature Prediction for Self-Supervised Visual Pre-Training](https://arxiv.org/abs/2112.09133)* by Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, Christoph Feichtenhofer. * *[Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377)* by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. * *[Corrupted Image Modeling for Self-Supervised Visual Pre-Training](https://arxiv.org/abs/2202.03382)* by Yuxin Fang, Li Dong, Hangbo Bao, Xinggang Wang, Furu Wei. * *[Are Large-scale Datasets Necessary for Self-Supervised Pre-training?](https://arxiv.org/abs/2112.10740)* by Alaaeldin El-Nouby, Gautier Izacard, Hugo Touvron, Ivan Laptev, Hervé Jegou, Edouard Grave. * *[PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers](https://arxiv.org/abs/2111.12710)* by Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Weiming Zhang, Lu Yuan, Dong Chen, Fang Wen, Nenghai Yu. * *[SimMIM: A Simple Framework for Masked Image Modeling](https://arxiv.org/abs/2111.09886)* by Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, Han Hu. ## 贡献 PASSL 还很年轻,它可能存在错误和问题。请在我们的错误跟踪系统中报告它们。我们欢迎您为 PASSL 做出贡献。此外,如果您对 PASSL 有任何想法,请告诉我们。 ## 引用 如果 PASSL 对您的研究有帮助,欢迎引用 ``` @misc{=passl, title={PASSL: A visual Self-Supervised Learning Library}, author={PASSL Contributors}, howpublished = {\url{https://github.com/PaddlePaddle/PASSL}}, year={2022} } ``` ## 开源许可证 如 LICENSE.txt 文件中所示,PASSL 使用 Apache 2.0 版权协议。