# feast **Repository Path**: mirrors_Shopify/feast ## Basic Information - **Project Name**: feast - **Description**: Feature Store for Machine Learning - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-21 - **Last Updated**: 2026-01-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README


[![unit-tests](https://github.com/feast-dev/feast/actions/workflows/unit_tests.yml/badge.svg?branch=master&event=push)](https://github.com/feast-dev/feast/actions/workflows/unit_tests.yml) [![integration-tests-and-build](https://github.com/feast-dev/feast/actions/workflows/master_only.yml/badge.svg?branch=master&event=push)](https://github.com/feast-dev/feast/actions/workflows/master_only.yml) [![java-integration-tests](https://github.com/feast-dev/feast/actions/workflows/java_master_only.yml/badge.svg?branch=master&event=push)](https://github.com/feast-dev/feast/actions/workflows/java_master_only.yml) [![linter](https://github.com/feast-dev/feast/actions/workflows/linter.yml/badge.svg?branch=master&event=push)](https://github.com/feast-dev/feast/actions/workflows/linter.yml) [![Docs Latest](https://img.shields.io/badge/docs-latest-blue.svg)](https://docs.feast.dev/) [![Python API](https://img.shields.io/readthedocs/feast/master?label=Python%20API)](http://rtd.feast.dev/) [![License](https://img.shields.io/badge/License-Apache%202.0-blue)](https://github.com/feast-dev/feast/blob/master/LICENSE) [![GitHub Release](https://img.shields.io/github/v/release/feast-dev/feast.svg?style=flat&sort=semver&color=blue)](https://github.com/feast-dev/feast/releases) ## Overview Feast is an open source feature store for machine learning. Feast is the fastest path to productionizing analytic data for model training and online inference. Please see our [documentation](https://docs.feast.dev/) for more information about the project. ## 📐 Architecture The above architecture is the minimal Feast deployment. Want to run the full Feast on GCP/AWS? Click [here](https://docs.feast.dev/how-to-guides/feast-gcp-aws). ## 🐣 Getting Started ### 1. Install Feast ```commandline pip install feast ``` ### 2. Create a feature repository ```commandline feast init my_feature_repo cd my_feature_repo ``` ### 3. Register your feature definitions and set up your feature store ```commandline feast apply ``` ### 4. Build a training dataset ```python from feast import FeatureStore import pandas as pd from datetime import datetime entity_df = pd.DataFrame.from_dict({ "driver_id": [1001, 1002, 1003, 1004], "event_timestamp": [ datetime(2021, 4, 12, 10, 59, 42), datetime(2021, 4, 12, 8, 12, 10), datetime(2021, 4, 12, 16, 40, 26), datetime(2021, 4, 12, 15, 1 , 12) ] }) store = FeatureStore(repo_path=".") training_df = store.get_historical_features( entity_df=entity_df, features = [ 'driver_hourly_stats:conv_rate', 'driver_hourly_stats:acc_rate', 'driver_hourly_stats:avg_daily_trips' ], ).to_df() print(training_df.head()) # Train model # model = ml.fit(training_df) ``` ```commandline event_timestamp driver_id conv_rate acc_rate avg_daily_trips 0 2021-04-12 08:12:10+00:00 1002 0.713465 0.597095 531 1 2021-04-12 10:59:42+00:00 1001 0.072752 0.044344 11 2 2021-04-12 15:01:12+00:00 1004 0.658182 0.079150 220 3 2021-04-12 16:40:26+00:00 1003 0.162092 0.309035 959 ``` ### 5. Load feature values into your online store ```commandline CURRENT_TIME=$(date -u +"%Y-%m-%dT%H:%M:%S") feast materialize-incremental $CURRENT_TIME ``` ```commandline Materializing feature view driver_hourly_stats from 2021-04-14 to 2021-04-15 done! ``` ### 6. Read online features at low latency ```python from pprint import pprint from feast import FeatureStore store = FeatureStore(repo_path=".") feature_vector = store.get_online_features( features=[ 'driver_hourly_stats:conv_rate', 'driver_hourly_stats:acc_rate', 'driver_hourly_stats:avg_daily_trips' ], entity_rows=[{"driver_id": 1001}] ).to_dict() pprint(feature_vector) # Make prediction # model.predict(feature_vector) ``` ```json { "driver_id": [1001], "driver_hourly_stats__conv_rate": [0.49274], "driver_hourly_stats__acc_rate": [0.92743], "driver_hourly_stats__avg_daily_trips": [72] } ``` ## 📦 Functionality and Roadmap The list below contains the functionality that contributors are planning to develop for Feast * Items below that are in development (or planned for development) will be indicated in parentheses. * We welcome contribution to all items in the roadmap! * Want to influence our roadmap and prioritization? Submit your feedback to [this form](https://docs.google.com/forms/d/e/1FAIpQLSfa1nRQ0sKz-JEFnMMCi4Jseag\_yDssO\_3nV9qMfxfrkil-wA/viewform). * Want to speak to a Feast contributor? We are more than happy to jump on a call. Please schedule a time using [Calendly](https://calendly.com/d/x2ry-g5bb/meet-with-feast-team). * **Data Sources** * [x] [Redshift source](https://docs.feast.dev/reference/data-sources/redshift) * [x] [BigQuery source](https://docs.feast.dev/reference/data-sources/bigquery) * [x] [Parquet file source](https://docs.feast.dev/reference/data-sources/file) * [x] [Synapse source (community plugin)](https://github.com/Azure/feast-azure) * [x] [Hive (community plugin)](https://github.com/baineng/feast-hive) * [x] [Postgres (community plugin)](https://github.com/nossrannug/feast-postgres) * [x] Kafka source (with [push support into the online store](reference/alpha-stream-ingestion.md)) * [x] [Snowflake source (community plugin)](https://github.com/sfc-gh-madkins/feast-snowflake) * [ ] HTTP source * **Offline Stores** * [x] [Redshift](https://docs.feast.dev/reference/offline-stores/redshift) * [x] [BigQuery](https://docs.feast.dev/reference/offline-stores/bigquery) * [x] [Synapse (community plugin)](https://github.com/Azure/feast-azure) * [x] [Hive (community plugin)](https://github.com/baineng/feast-hive) * [x] [Postgres (community plugin)](https://github.com/nossrannug/feast-postgres) * [x] [In-memory / Pandas](https://docs.feast.dev/reference/offline-stores/file) * [x] [Custom offline store support](https://docs.feast.dev/how-to-guides/adding-a-new-offline-store) * [x] [Snowflake (community plugin)](https://github.com/sfc-gh-madkins/feast-snowflake) * [x] [Trino (communiuty plugin)](https://github.com/Shopify/feast-trino) * **Online Stores** * [x] [DynamoDB](https://docs.feast.dev/reference/online-stores/dynamodb) * [x] [Redis](https://docs.feast.dev/reference/online-stores/redis) * [x] [Datastore](https://docs.feast.dev/reference/online-stores/datastore) * [x] [SQLite](https://docs.feast.dev/reference/online-stores/sqlite) * [x] [Azure Cache for Redis (community plugin)](https://github.com/Azure/feast-azure) * [x] [Postgres (community plugin)](https://github.com/nossrannug/feast-postgres) * [x] [Custom online store support](https://docs.feast.dev/how-to-guides/adding-support-for-a-new-online-store) * [ ] Bigtable * [ ] Cassandra * **Streaming** * [x] [Custom streaming ingestion job support](https://docs.feast.dev/how-to-guides/creating-a-custom-provider) * [x] [Push based streaming data ingestion](reference/alpha-stream-ingestion.md) * [ ] Streaming ingestion on AWS * [ ] Streaming ingestion on GCP * **Feature Engineering** * [x] On-demand Transformations (Alpha release. See [RFC](https://docs.google.com/document/d/1lgfIw0Drc65LpaxbUu49RCeJgMew547meSJttnUqz7c/edit#)) * [ ] Batch transformation (SQL. In progress. See [RFC](https://docs.google.com/document/d/1964OkzuBljifDvkV-0fakp2uaijnVzdwWNGdz7Vz50A/edit)) * [ ] Streaming transformation * **Deployments** * [x] AWS Lambda (Alpha release. See [RFC](https://docs.google.com/document/d/1eZWKWzfBif66LDN32IajpaG-j82LSHCCOzY6R7Ax7MI/edit)) * [x] Kubernetes (See [guide](https://docs.feast.dev/how-to-guides/running-feast-in-production#4.3.-java-based-feature-server-deployed-on-kubernetes)) * [ ] Cloud Run * [ ] KNative * **Feature Serving** * [x] Python Client * [x] REST Feature Server (Python) (Alpha release. See [RFC](https://docs.google.com/document/d/1iXvFhAsJ5jgAhPOpTdB3j-Wj1S9x3Ev\_Wr6ZpnLzER4/edit)) * [x] gRPC Feature Server (Java) (See [#1497](https://github.com/feast-dev/feast/issues/1497)) * [x] Push API * [ ] Java Client * [ ] Go Client * [ ] Delete API * [ ] Feature Logging (for training) * **Data Quality Management (See [RFC](https://docs.google.com/document/d/110F72d4NTv80p35wDSONxhhPBqWRwbZXG4f9mNEMd98/edit))** * [ ] Data profiling and validation (Great Expectations) (Planned for Q1 2022) * [ ] Metric production * [ ] Training-serving skew detection * [ ] Drift detection * **Feature Discovery and Governance** * [x] Python SDK for browsing feature registry * [x] CLI for browsing feature registry * [x] Model-centric feature tracking (feature services) * [ ] REST API for browsing feature registry * [ ] Feast Web UI * [ ] Feature versioning * [ ] Amundsen integration ## 🎓 Important Resources Please refer to the official documentation at [Documentation](https://docs.feast.dev/) * [Quickstart](https://docs.feast.dev/getting-started/quickstart) * [Tutorials](https://docs.feast.dev/tutorials/tutorials-overview) * [Running Feast with GCP/AWS](https://docs.feast.dev/how-to-guides/feast-gcp-aws) * [Change Log](https://github.com/feast-dev/feast/blob/master/CHANGELOG.md) * [Slack (#Feast)](https://slack.feast.dev/) ## 👋 Contributing Feast is a community project and is still under active development. Please have a look at our contributing and development guides if you want to contribute to the project: - [Contribution Process for Feast](https://docs.feast.dev/project/contributing) - [Development Guide for Feast](https://docs.feast.dev/project/development-guide) - [Development Guide for the Main Feast Repository](./CONTRIBUTING.md) ## ✨ Contributors Thanks goes to these incredible people: