&
Use a web-browser (e.g. Chrome, Firefox) to interact with the platform.
The Jupyter notebook URL can be found with command:
> sudo jupyter notebook list
Output example:
> Currently running servers:
>
> `http://ip:port/?token=xxxxxxxxxxxxxxxxxx`
### Command Line
**Note** The application needs to be run with ***sudo*** .
#### Examples:
**Note** Only one instance of the application can run at a time.
* For File-In and File-Out playback, run below command.
> sudo defect-detect -i input.y8 -x raw.y8 -y pre_pros.y8 -z final.y8
**Note** All 3 stage output will be dumped into file. It's must to give option for all 3 output file name.
* For File-In and Display-Out playback, run below command.
> sudo defect-detect -i input.y8
**Note** All 3 stage outputs will be displayed on DP/HDMI. Input file path needs to be changed as per the requirement.
* For Live-In and File-Out playback, run below command.
> sudo defect-detect -x raw.y8 -y pre_pros.y8 -z final.y8
**Note** All 3 stage output will be dumped into file. It's must to give option for all 3 output file name.
* For Live-In and Display-Out playback, run below command.
> sudo defect-detect
**Note** All 3 stage outputs will be displayed on DP/HDMI.
#### Command Options:
The examples show the capability of the defect-detect for specific configurations. User can get more and detailed application options as following by invoking
` defect-detect --help`
```
Usage:
defect-detect [OPTION?] - Application for defect detction on SoM board of Xilinx.
Help Options:
-h, --help Show help options
--help-all Show all help options
--help-gst Show GStreamer Options
Application Options:
-i, --infile=file path Location of input file
-x, --rawout=file path Location of capture raw output file
-y, --preprocessout=file path Location of pre-processed output file
-z, --finalout=file path Location of final output file
-w, --width=1280 Resolution width of the input
-h, --height=800 Resolution height of the input
-r, --framerate=60 Framerate of the input source
-d, --demomode=0 For Demo mode value must be 1
-c, --cfgpath=/opt/xilinx/kv260-defect-detect/share/vvas/ JSON config file path
```
# Files structure
* The application is installed as:
* Binary File Directory: /opt/xilinx/kv260-defect-detect/bin
| Filename | Description |
|-----------------|-------------|
| defect-detect | main app |
* Script File Directory: /opt/xilinx/kv260-defect-detect/bin
| Filename | Description |
|---------------------------------|-----------------------------------------------------------------|
| `defect-detect-install.py` | Script to copy Jupyter notebook to user directory. |
| `ar0144-sensor-calib.sh` | Script to do the sensor calibration for user test environment. |
* Configuration file directory: /opt/xilinx/kv260-defect-detect/share/vvas/
| Filename | Description |
|-----------------------------|-------------------------------------------|
| cca-accelarator.json | Config of CCA accelarator. |
| otsu-accelarator.json | Config of OTSU accelarator. |
| preprocess-accelarator.json | Config of pre-process accelarator. |
| text2overlay.json | Config of text2overlay. |
* Jupyter Notebook Directory: /opt/xilinx/kv260-defect-detect/share/notebooks/
| Filename | Description |
|----------------------|------------------------------------------|
| defect-detect.ipynb | Jupyter notebook file for defect detect |
Copyright© 2021-2022 Xilinx