# pandas-validator **Repository Path**: mirrors_c-bata/pandas-validator ## Basic Information - **Project Name**: pandas-validator - **Description**: Validation Library for pandas' DataFrame and Series. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-23 - **Last Updated**: 2026-01-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ================ pandas-validator ================ .. image:: https://travis-ci.org/c-bata/pandas-validator.svg?branch=master :target: https://travis-ci.org/c-bata/pandas-validator .. image:: https://badge.fury.io/py/pandas_validator.svg :target: http://badge.fury.io/py/pandas_validator .. image:: https://coveralls.io/repos/github/c-bata/pandas-validator/badge.svg?branch=master :target: https://coveralls.io/github/c-bata/pandas-validator?branch=master :alt: Coveralls Status Validates the pandas object such as DataFrame and Series. And this can define validator like django form class. Why bugs occur in Data Wrangling with pandas -------------------------------------------- When we wrangle our data with pandas, We use `DataFrame` frequently. `DataFrame` is very powerfull and easy to handle. But `DataFrame` has no it's schema, so It allows irregular values without being aware of it. We are confused by these values and affect the results of data wrangling. `pandas-validator` offers the functions for validating `DataFrame` or `Series` objects. Overview -------- .. code-block:: python import pandas as pd import pandas_validator as pv class SampleDataFrameValidator(pv.DataFrameValidator): row_num = 5 column_num = 2 label1 = pv.IntegerColumnValidator('label1', min_value=0, max_value=10) label2 = pv.FloatColumnValidator('label2', min_value=0, max_value=10) validator = SampleDataFrameValidator() df = pd.DataFrame({'label1': [0, 1, 2, 3, 4], 'label2': [5.0, 6.0, 7.0, 8.0, 9.0]}) validator.is_valid(df) # True. df = pd.DataFrame({'label1': [11, 12, 13, 14, 15], 'label2': [5.0, 6.0, 7.0, 8.0, 9.0]}) validator.is_valid(df) # False. df = pd.DataFrame({'label1': [0, 1, 2], 'label2': [5.0, 6.0, 7.0]}) validator.is_valid(df) # False Getting Started =============== Requirements ------------ * Support python version: 2.7, 3.4, 3.5, 3.6 * Support pandas version: 0.18, 0.19 Installation ------------ .. code-block:: console $ pip install pandas_validator Usage ----- Please see the following demo written by ipython notebook. * `Demo in Japanese `_ * `Demo in English `_ License ======= This software is licensed under the MIT License. Resources ========= * `Github `_ * `PyPI `_