# PRML **Repository Path**: mirrors_ctgk/PRML ## Basic Information - **Project Name**: PRML - **Description**: PRML algorithms implemented in Python - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2022-01-11 - **Last Updated**: 2026-01-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PRML Python codes implementing algorithms described in Bishop's book "Pattern Recognition and Machine Learning" ## Required Packages - python 3 - numpy - scipy - jupyter (optional: to run jupyter notebooks) - matplotlib (optional: to plot results in the notebooks) - sklearn (optional: to fetch data) ## Notebooks The notebooks in this repository can be viewed with nbviewer or other tools, or you can use [Amazon SageMaker Studio Lab](https://studiolab.sagemaker.aws/), a free computing environment on AWS (prior [registration with an email address](https://studiolab.sagemaker.aws/requestAccount) is required. Please refer to [this document](https://docs.aws.amazon.com/sagemaker/latest/dg/studio-lab-onboard.html) for usage). From the table below, you can open the notebooks for each chapter in each of these environments. |nbviewer|Amazon SageMaker Studio Lab| |:-------|:--------------------------:| |[ch1. Introduction](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch01_Introduction.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch01_Introduction.ipynb)| |[ch2. Probability Distributions](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch02_Probability_Distributions.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch02_Probability_Distributions.ipynb)| |[ch3. Linear Models for Regression](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch03_Linear_Models_for_Regression.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch03_Linear_Models_for_Regression.ipynb)| |[ch4. Linear Models for Classification](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch04_Linear_Models_for_Classfication.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch04_Linear_Models_for_Classfication.ipynb)| |[ch5. Neural Networks](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch05_Neural_Networks.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch05_Neural_Networks.ipynb)| |[ch6. Kernel Methods](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch06_Kernel_Methods.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch06_Kernel_Methods.ipynb)| |[ch7. Sparse Kernel Machines](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch07_Sparse_Kernel_Machines.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch07_Sparse_Kernel_Machines.ipynb)| |[ch8. Graphical Models](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch08_Graphical_Models.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch08_Graphical_Models.ipynb)| |[ch9. Mixture Models and EM](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch09_Mixture_Models_and_EM.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch09_Mixture_Models_and_EM.ipynb)| |[ch10. Approximate Inference](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch10_Approximate_Inference.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch10_Approximate_Inference.ipynb)| |[ch11. Sampling Methods](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch11_Sampling_Methods.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch11_Sampling_Methods.ipynb)| |[ch12. Continuous Latent Variables](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch12_Continuous_Latent_Variables.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch12_Continuous_Latent_Variables.ipynb)| |[ch13. Sequential Data](https://nbviewer.jupyter.org/github/ctgk/PRML/blob/main/notebooks/ch13_Sequential_Data.ipynb)|[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/ctgk/PRML/blob/main/notebooks/ch13_Sequential_Data.ipynb)| If you use the SageMaker Studio Lab, open a terminal and execute the following commands to install the required libraries. ```bash conda env create -f environment.yaml # might be optional conda activate prml python setup.py install ```