# polars **Repository Path**: mirrors_erikbrinkman/polars ## Basic Information - **Project Name**: polars - **Description**: Dataframes powered by a multithreaded, vectorized query engine, written in Rust - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-16 - **Last Updated**: 2025-09-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord
## Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using [Apache Arrow Columnar Format](https://arrow.apache.org/docs/format/Columnar.html) as the memory model. - Lazy | eager execution - Multi-threaded - SIMD - Query optimization - Powerful expression API - Hybrid Streaming (larger-than-RAM datasets) - Rust | Python | NodeJS | R | ... To learn more, read the [user guide](https://docs.pola.rs/). ## Python ```python >>> import polars as pl >>> df = pl.DataFrame( ... { ... "A": [1, 2, 3, 4, 5], ... "fruits": ["banana", "banana", "apple", "apple", "banana"], ... "B": [5, 4, 3, 2, 1], ... "cars": ["beetle", "audi", "beetle", "beetle", "beetle"], ... } ... ) # embarrassingly parallel execution & very expressive query language >>> df.sort("fruits").select( ... "fruits", ... "cars", ... pl.lit("fruits").alias("literal_string_fruits"), ... pl.col("B").filter(pl.col("cars") == "beetle").sum(), ... pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"), ... pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"), ... pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"), ... pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"), ... ) shape: (5, 8) ┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐ │ fruits ┆ cars ┆ literal_stri ┆ B ┆ sum_A_by_ca ┆ sum_A_by_fr ┆ rev_A_by_fr ┆ sort_A_by_B │ │ --- ┆ --- ┆ ng_fruits ┆ --- ┆ rs ┆ uits ┆ uits ┆ _by_fruits │ │ str ┆ str ┆ --- ┆ i64 ┆ --- ┆ --- ┆ --- ┆ --- │ │ ┆ ┆ str ┆ ┆ i64 ┆ i64 ┆ i64 ┆ i64 │ ╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡ │ "apple" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 7 ┆ 4 ┆ 4 │ │ "apple" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 7 ┆ 3 ┆ 3 │ │ "banana" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 8 ┆ 5 ┆ 5 │ │ "banana" ┆ "audi" ┆ "fruits" ┆ 11 ┆ 2 ┆ 8 ┆ 2 ┆ 2 │ │ "banana" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 8 ┆ 1 ┆ 1 │ └──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘ ``` ## SQL ```python >>> df = pl.scan_csv("docs/assets/data/iris.csv") >>> ## OPTION 1 >>> # run SQL queries on frame-level >>> df.sql(""" ... SELECT species, ... AVG(sepal_length) AS avg_sepal_length ... FROM self ... GROUP BY species ... """).collect() shape: (3, 2) ┌────────────┬──────────────────┐ │ species ┆ avg_sepal_length │ │ --- ┆ --- │ │ str ┆ f64 │ ╞════════════╪══════════════════╡ │ Virginica ┆ 6.588 │ │ Versicolor ┆ 5.936 │ │ Setosa ┆ 5.006 │ └────────────┴──────────────────┘ >>> ## OPTION 2 >>> # use pl.sql() to operate on the global context >>> df2 = pl.LazyFrame({ ... "species": ["Setosa", "Versicolor", "Virginica"], ... "blooming_season": ["Spring", "Summer", "Fall"] ...}) >>> pl.sql(""" ... SELECT df.species, ... AVG(df.sepal_length) AS avg_sepal_length, ... df2.blooming_season ... FROM df ... LEFT JOIN df2 ON df.species = df2.species ... GROUP BY df.species, df2.blooming_season ... """).collect() ``` SQL commands can also be run directly from your terminal using the Polars CLI: ```bash # run an inline SQL query > polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;" # run interactively > polars Polars CLI v0.3.0 Type .help for help. > SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species; ``` Refer to the [Polars CLI repository](https://github.com/pola-rs/polars-cli) for more information. ## Performance 🚀🚀 ### Blazingly fast Polars is very fast. In fact, it is one of the best performing solutions available. See the [PDS-H benchmarks](https://www.pola.rs/benchmarks.html) results. ### Lightweight Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times: - polars: 70ms - numpy: 104ms - pandas: 520ms ### Handles larger-than-RAM data If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with `collect(engine='streaming')` to run the query streaming. (This might be a little slower, but it is still very fast!) ## Setup ### Python Install the latest Polars version with: ```sh pip install polars ``` We also have a conda package (`conda install -c conda-forge polars`), however pip is the preferred way to install Polars. Install Polars with all optional dependencies. ```sh pip install 'polars[all]' ``` You can also install a subset of all optional dependencies. ```sh pip install 'polars[numpy,pandas,pyarrow]' ``` See the [User Guide](https://docs.pola.rs/user-guide/installation/#feature-flags) for more details on optional dependencies To see the current Polars version and a full list of its optional dependencies, run: ```python pl.show_versions() ``` Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea. ### Rust You can take latest release from `crates.io`, or if you want to use the latest features / performance improvements point to the `main` branch of this repo. ```toml polars = { git = "https://github.com/pola-rs/polars", rev = "