# tfjs-mnist-workshop **Repository Path**: mirrors_google/tfjs-mnist-workshop ## Basic Information - **Project Name**: tfjs-mnist-workshop - **Description**: E2E TensorFlow workshop from model training using Keras API all the way to visualization using TensorFlow.js - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-19 - **Last Updated**: 2025-12-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # tfjs-mnist-workshop This is an e2e TensorFlow workshop from model training using Keras API all the way to visualization using TensorFlow.js User will need to complete exercises (.ipynb files) under py/ folder. Reference implementation could be found from /py/solutions folder. # User guide * Prepare environment * For Windows users, download and install ANaconda with either Python 2 or Python 3 * For Linux/Mac users, you should already have Python installed * Install dependencies * `pip install -r requirements.txt` * If you're facing connectivity issues, please use `pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt` * Visualize the initial model in browser * For Python 2 users, `python -m SimpleHTTPServer` * For Python 3 users, `python -m http.server` * Open localhost:8080 in your browser * Most of the predictions are wrong (red) because the model is doing random guess * Coding * Use jupyter notebook to complete an exercise and generate a model * Convert the mdoel to TF JS format * For windows users, `convert.bat PATH_TO_THE_H5_FILE` * For Linux/Mac users, `convert.sh PATH_TO_THE_H5_FILE` * Visualize the model in browser * For Python 2 users, `python -m SimpleHTTPServer` * For Python 3 users, `python -m http.server` * Open localhost:8080 in your browser * Most of the predictions should be correct (green) now