# GreenplumAWSStreamingData **Repository Path**: mirrors_greenplum-db/GreenplumAWSStreamingData ## Basic Information - **Project Name**: GreenplumAWSStreamingData - **Description**: Demonstratea Close loop analytics scenario with Greenplum, AWS Kinesis, SQS, Lambda, S3, PXF, RTSMadlib. - **Primary Language**: Unknown - **License**: BSD-2-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-16 - **Last Updated**: 2025-09-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README **VMware has ended active development of this project, this repository will no longer be updated** # GreenplumAWSStreamingData This Git project goal is to demonstrate Closed loop analytics with Greenplum leveraging AWS cloud native tools. The Demo application choosed it a credit card fraud transaction Machine learning model. The Model will be built and tested on Greenplum using sample application in samples section of [RTSMADlib](https://www.google.com/url?q=https://github.com/pivotal/Realtime-scoring-for-MADlib&sa=D&source=hangouts&ust=1584626576096000&usg=AFQjCNEppB_6B4bN6Tg-eUv1O1qOuvKAkg). The model is then deployed on Amazon EKS to integrate in to streaming solution via Amazon Java Lambda. The streaming part is built with all AWS cloud native tooling; * AWS Kinesis Stream * AWS Kinesis S3 Firehose * Pivotal Greenplum PXF, * AWS SQS * AWS Lambda * RTSMadlib to deploy ML models on AWS EKS. ## The Document embeds a [demo](https://onevmw-my.sharepoint.com/:b:/g/personal/spaladugu_vmware_com/Efl7dpRv5-xEm3yAqi0g6EUBcZdhd3py5wVpYrehJB332Q?e=QsSOzu) The overall folow can be shown as ; ![](/VmwareGreenplumStreamingMLUsecaseOnAmazonAWS.svg)