# anomaly-detection-code-pattern **Repository Path**: mirrors_ibm/anomaly-detection-code-pattern ## Basic Information - **Project Name**: anomaly-detection-code-pattern - **Description**: Sample Jupyter Notebook for playing around with the Anomaly Detection service to be made available on API Hub - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-07-31 - **Last Updated**: 2025-12-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ___ ## Talks 1. AAAAI 2023 1.5-hour Lab based tutorial 1. MLSys 2022 half day tutorial 2. KDD 2022 3-hour tutorial 3. ICDE 2022 tutorial 4. DASFAA 2022 tutorial ___ ## Anomaly Detection Service - [IBM Developer API Hub](https://developer.ibm.com/apis/catalog/ai4industry--anomaly-detection-product/) - [UI](https://ad.dev-cluster-dal12-b3c-4x1-9732de67fcec6eaeab6586412035e56b-0000.us-south.containers.appdomain.cloud/) ___ ## Example : Setting Local Juputer Environment 1. Python 3 2. Credentials to access the API service (Please follow the [instructions](https://developer.ibm.com/apis/catalog/ai4industry--anomaly-detection-product/Getting%20Started) or [tutorial](./tutorials/ADTutorial_Registration.pdf)) 3. Clone the repository ```bash git clone https://github.com/IBM/anomaly-detection-code-pattern.git cd anomaly-detection-code-pattern/ ``` 4. (Optional) Create a virtual environment ``` virtualenv ad_env source ad_env/bin/activate ``` 5. Install required packages ``` pip install -r requirements.txt ``` 6. Open Jupyter notebook in current directory ```bash python -m ipykernel install --user --name=ad_env # optional: add virtual environment to jupyter notebook jupyter notebook ``` ___ ## Notebooks Here are the list of provided notebooks: 1. [Univariate_AD_service_public_data.ipynb](./notebooks/Univariate_AD_service_public_data.ipynb): Anomaly detection on univariate public data 2. [Univariate_AD_service_sample_data.ipynb](./notebooks/Univariate_AD_service_sample_data.ipynb): Anomaly detection on univariate sample data 3. [Multivariate_AD_service_sample_data.ipynb](./notebooks/Multivariate_AD_service_sample_data.ipynb): Anomaly detection on multivariate sample data 4. [Regression-aware_AD_service_sample_data.ipynb](./notebooks/Regression-aware_AD_service_sample_data.ipynb): Regression based anomaly detection 5. [MixtureModel-aware_AD_service_sample_data.ipynb](./notebooks/MixtureModel-aware_AD_service_sample_data.ipynb): Mixture model based anomaly detection ___ ## Additional Links 1. API Service in [IBM API Hub](https://developer.ibm.com/apis/catalog/ai4industry--anomaly-detection-product/) 2. API Service in [IBM Learning Path](https://developer.ibm.com/learningpaths/get-started-anomaly-detection-api/)