# edge-video-analytics-microservice **Repository Path**: mirrors_intel/edge-video-analytics-microservice ## Basic Information - **Project Name**: edge-video-analytics-microservice - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-02-18 - **Last Updated**: 2025-11-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Contents - [Contents](#contents) - [Edge Video Analytics Microservice](#edge-video-analytics-microservice) - [Build the Base Image](#build-the-base-image) - [Run the Base Image](#run-the-base-image) - [Run EVAM in Open EII Mode](#run-evam-in-open-eii-mode) ## Edge Video Analytics Microservice This repository contains the source code for Edge Video Analytics Microservice (EVAM) used for the [Video Analytics Use Case](https://www.intel.com/content/www/us/en/developer/articles/technical/video-analytics-service.html). For information on how to build the use case, refer to the [Get Started](https://www.intel.com/content/www/us/en/developer/articles/technical/video-analytics-service.html#inpage-nav-3) guide. ### Build the Base Image Complete the following steps to build the base image: 1. Run the following command: ```sh `docker-compose -f docker-compose-build.yml build` ``` 2. If required, download the pre-built container image for Edge Video Analytics Microservice from [Docker Hub](https://hub.docker.com/r/intel/edge_video_analytics_microservice). ### Run the Base Image Complete the following steps to run the base image: 1. Clone this [repo](https://github.com/intel/edge-video-analytics-microservice). 2. Run the following command to make the following files executable: ```sh chmod +x tools/model_downloader/model_downloader.sh docker/run.sh ``` 3. Download the required models. From the cloned repo, run the following command: ```sh ./tools/model_downloader/model_downloader.sh --model-list ``` 4. After downloading the models, you will have the `models` directory in the base folder. Refer to the following: ```json models/ ├── action_recognition ├── audio_detection ├── emotion_recognition ├── face_detection_retail ├── object_classification └── object_detection ``` 5. Add the following lines in the `docker-compose.yml` environment if you are behind a proxy. ```sh - HTTP_PROXY=:/ - HTTPS_PROXY=:/ - NO_PROXY=localhost,127.0.0.1 ``` 6. Run the `sudo docker-compose up` command. >**Note:** For more details, refer to [Run the Edge Video Analytics Microservice](https://www.intel.com/content/www/us/en/developer/articles/technical/video-analytics-service.html#inpage-nav-3-1). ### Run EVAM in Open EII Mode To run EVAM in the Open EII mode, refer to the [README](eii/README.md).