# capsnet-text-classification **Repository Path**: mirrors_jmrozanec/capsnet-text-classification ## Basic Information - **Project Name**: capsnet-text-classification - **Description**: Provides a capsnet implementation for text classification - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-09 - **Last Updated**: 2026-01-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # capsnet-text-classification Provides a capsnet implementation for text classification We provide the following notebooks: - dataset-to-embeddings.ipynb: to transform headlines to embedding vectors used as new dataset to perform classification - dataset-analysis.ipynb: to obtain general information regarding the dataset: most frequent terms, which cannot be represented as embeddings, most frequent words particular to a specific topic, etc. - XGBoost.ipynb: classification performed with XGBoost - ConvRec.ipynb: ConvRec implementation and dataset classification - CapsNet.ipynb: CapsNet implementation and dataset classification Results we obtained: |Metric|CapsNet|XGBoost|ConvRec| |------|-------|-------|-------| |Accuracy|0.8901|0.8179|0.8897| |Time trained|920 minutes|23 minutes|189 minutes| To start a Docker image, run: - docker run -p 8888:8888 -v "$PWD":/home/jovyan jupyter/datascience-notebook - docker exec b7f3abbf54da pip install keras