Data encompasses a collection of discrete objects, events out of context, and facts. Processing such data provides a multitude of information. Processing such information based on our experience, judgment or jurisdiction elicits knowledge as the result of learning. But the million-dollar question is - how do we get meaningful information from such data? The answer to this is Exploratory Data Analysis (EDA) as a process for investigating datasets, elucidating subjects, and visualizing the outcomes. EDA is an approach for data analysis that applies a diversity of techniques to maximize certain insights into a data set; reveal underlying structure; extract significant variables; detect outliers and anomalies; test underlying assumptions; develop models, and determine best parameters for future estimations. This book "Hands-On Exploratory Data Analysis with Python" is built on providing practical knowledge about the main pillars of EDA including data cleaning, data preparation, data exploration, and data visualization. Why visualization? Well, several research studies reveal portraying data in graphical form is clearer and makes complex statistical data analyses and business intelligence more marketable.
The readers will get the opportunity to explore open-source datasets including healthcare data, demographics data, Titanic data set, Wine Quality data set, Boston housing pricing dataset, and many others. Using these real-life datasets, the readers get hands-on practice to understand the data, summarize their characteristics and visualize them for business intelligence. The book expects readers to use Pandas, a powerful library for working with data, and other core Python libraries including NumPy and SciPy, StatsModels for regression, and Matplotlib for visualization.
It is important to practice what you have learned from this book. Hence, we have created a comprehensive mobile apps where you can create a simple account and practice Exploratory Data Analysis. Here is the link to both IOS and Android app:
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。