2 Star 0 Fork 0

mirrors_lepy/Hands-on-Exploratory-Data-Analysis-with-Python

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
MIT

Hands on Exploratory Data analysis with Python

Data encompasses a collection of discrete objects, events out of context, and facts. Processing such data provides a multitude of information. Processing such information based on our experience, judgment or jurisdiction elicits knowledge as the result of learning. But the million-dollar question is - how do we get meaningful information from such data? The answer to this is Exploratory Data Analysis (EDA) as a process for investigating datasets, elucidating subjects, and visualizing the outcomes. EDA is an approach for data analysis that applies a diversity of techniques to maximize certain insights into a data set; reveal underlying structure; extract significant variables; detect outliers and anomalies; test underlying assumptions; develop models, and determine best parameters for future estimations. This book "Hands-On Exploratory Data Analysis with Python" is built on providing practical knowledge about the main pillars of EDA including data cleaning, data preparation, data exploration, and data visualization. Why visualization? Well, several research studies reveal portraying data in graphical form is clearer and makes complex statistical data analyses and business intelligence more marketable.

The readers will get the opportunity to explore open-source datasets including healthcare data, demographics data, Titanic data set, Wine Quality data set, Boston housing pricing dataset, and many others. Using these real-life datasets, the readers get hands-on practice to understand the data, summarize their characteristics and visualize them for business intelligence. The book expects readers to use Pandas, a powerful library for working with data, and other core Python libraries including NumPy and SciPy, StatsModels for regression, and Matplotlib for visualization.

Chapters

Want to become expert

It is important to practice what you have learned from this book. Hence, we have created a comprehensive mobile apps where you can create a simple account and practice Exploratory Data Analysis. Here is the link to both IOS and Android app:

appstore googleplay

Contributors

MIT License Copyright (c) 2019 Packt Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

简介

取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mirrors_lepy/Hands-on-Exploratory-Data-Analysis-with-Python.git
git@gitee.com:mirrors_lepy/Hands-on-Exploratory-Data-Analysis-with-Python.git
mirrors_lepy
Hands-on-Exploratory-Data-Analysis-with-Python
Hands-on-Exploratory-Data-Analysis-with-Python
master

搜索帮助