2 Star 0 Fork 0

mirrors_lepy/Machine-Learning-with-Python

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
MIT

Machine-Learning-with-Python star this repo fork this repo

alt text

Small scale machine learning projects to understand the core concepts

  • Topic Modelling using Latent Dirichlet Allocation with newsgroups20 dataset, implemented with Python and Scikit-Learn
  • Implemented a simple neural network built with Keras on MNIST dataset
  • Stock Price Forecasting on Google using Linear Regression
  • Implemented a simple a social network to learn basics of Python
  • Implemented Naives Bayes Classifier to filter spam messages on SpamAssasin Public Corpus
  • Churn Prediction Model for banking dataset using Keras and Scikit-Learn
  • Implemented Random Forest from scratch and built a classifier on Sonar dataset from UCI repository
  • Simple Linear Regression in Python on sample dataset
  • Multiple Regression in Python on sample dataset
  • PCA and scaling sample stock data in Python [working_with_data]
  • Decision Trees in Python on sample dataset
  • Logistic Regression in Python on sample dataset
  • Built a neural network in Python to defeat a captcha system
  • Helper methods include commom operations used in Statistics, Probability, Linear Algebra and Data Analysis
  • K-means clustering with example data; clustering colors with k-means; Bottom-up Hierarchical Clustering
  • Generating Word Clouds
  • Sentence generation using n-grams
  • Sentence generation using Grammars and Automata Theory; Gibbs Sampling
  • Topic Modelling using Latent Dirichlet Analysis (LDA)

Installation notes

MLwP is built using Python 3.5. The easiest way to set up a compatible environment is to use Conda. This will set up a virtual environment with the exact version of Python used for development along with all the dependencies needed to run MLwP.

  1. Download and install Conda.

  2. Create a Conda environment with Python 3.

    conda create -n *your env name* python=3.5
    
  3. Now activate the Conda environment.

    source activate *your env name*
    
  4. Install the required dependencies.

    ./scripts/install_requirements.sh
    
    

How good is the code ?

  • It is well tested
  • It passes style checks (PEP8 compliant)
  • It can compile in its current state (and there are relatively no issues)

How much support is available?

  • FAQs (coming soon)
  • Documentation (coming soon)

Issues

Feel free to submit issues and enhancement requests.

Contributing

Please refer to each project's style guidelines and guidelines for submitting patches and additions. In general, we follow the "fork-and-pull" Git workflow.

  1. Fork the repo on GitHub
  2. Clone the project to your own machine
  3. Commit changes to your own branch
  4. Push your work back up to your fork
  5. Submit a Pull request so that we can review your changes

NOTE: Be sure to merge the latest from "upstream" before making a pull request!

MIT License Copyright (c) 2019 Amogh Singhal Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

简介

Small scale machine learning projects to understand the core concepts 展开 收起
README
MIT
取消

发行版

暂无发行版

贡献者

全部

语言

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mirrors_lepy/Machine-Learning-with-Python.git
git@gitee.com:mirrors_lepy/Machine-Learning-with-Python.git
mirrors_lepy
Machine-Learning-with-Python
Machine-Learning-with-Python
master

搜索帮助