# GhostNetAI **Repository Path**: mirrors_microsoft/GhostNetAI ## Basic Information - **Project Name**: GhostNetAI - **Description**: Repository of model development for GhostNetZero.Ai - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-10-11 - **Last Updated**: 2026-01-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # GhostNet Segmentation ## Example commands: ### Train - Every existing hyperparameters are in the configuration files. After a model is trained, a ckpt file will be saved under the `weights` folder. ``` python main.py --config ./configs/ghostseg_de_plain_111824.yaml ``` ### Validation - Validation will not output npz file for post process. Just outputs evaluation metrics. ``` python main.py --config ./configs/ghostseg_de_plain_111824.yaml --evaluate ./weights/GhostSeg_DE/Plain/GhostSeg_DE_Plain_111824-0-epoch\=2514-valid_mean_IoU\=0.77.ckpt --val ``` ### Test - Test will save an npz file that has images, labels, logits, and all relevent data for post-processing. ``` python main.py --config ./configs/ghostseg_de_plain_111824.yaml --evaluate ./weights/GhostSeg_DE/Plain/GhostSeg_DE_Plain_111824-0-epoch\=2514-valid_mean_IoU\=0.77.ckpt ``` ### Prediction - Prediction only loads a data root and outputs polygon predictions, center lines of the polygons, and centroids of these polygons. All coordinates are in percentages of image widths and heights. ``` python main.py --config ./configs/ghostseg_de_plain_111824.yaml --evaluate ./weights/GhostSeg_DE/Plain/GhostSeg_DE_Plain_111824-0-epoch\=2514-valid_mean_IoU\=0.77.ckpt --predict --predict_root ~/datasets/wwf_seg/Germany/val/ ```