# dtmi **Repository Path**: mirrors_microsoft/dtmi ## Basic Information - **Project Name**: dtmi - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-19 - **Last Updated**: 2026-02-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![Build Status](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_apis/build/status/AGCI%20AI/Happy%20Path%20Builds/ai-architecture-template?branchName=master)](https://dev.azure.com/AZGlobal/Azure%20Global%20CAT%20Engineering/_build/latest?definitionId=170&branchName=master) ### Authors: Fidan Boylu Uz, Yan Zhang, Mario Bourgoin, Daniel Grecoe, Daniel Ciborowski # AI Architecture Template ## Overview This template is meant to simplify creating new Azure ML based projects, with an easy to configure Azure DevOps CI/CD pipeline. ## Prerequisites 1. [Anaconda Python](https://www.anaconda.com/download) 1. [Docker](https://docs.docker.com/v17.12/install/linux/docker-ee/ubuntu) installed. 1. [Azure account](https://azure.microsoft.com). --- **NOTE** You will need to be able to run docker commands without sudo to run this tutorial. Use the following commands to do this. ```bash sudo usermod -aG docker $USER newgrp docker ``` --- The tutorial was developed on an [Azure Ubuntu DSVM](https://docs.microsoft.com/en-us/azure/machine-learning/data-science-virtual-machine/dsvm-ubuntu-intro), which addresses the first three prerequisites. ## Setup ## Create new repository First either create a new repo from the template, or create a fork of this repo. You can use this template by selecting `Use This Template` to create a new repository based on this project from the repository homepage. ## Set Up Azure DevOps Pipeline You may use the .ci/azure-pipeline.yml to configure a CI/CD build for your repostitory. Follow the directions provided within the pipeline. For details on the prerequistes please see [here](az-ml-realtime-score). With the Azure CLI installed, the following script can be used to create a new pipeline in your organizations Azure DevOps instance. ```bash #!/usr/bin/env bash organization="" project="" service_connection="" name="" repository="[github org]/[github repoistory name]" az extension add --name azure-devops az devops configure --defaults organization=https://dev.azure.com/$organization project="$project" az login az pipelines create --name $name \ --description '' \ --repository $repository \ --branch master \ --repository-type github \ --yml-path .ci/azure-pipelines-v2.yml \ --service-connection $service_connection ``` ## Run Locally To set up your environment to run this notebook, please follow these steps. They setup the notebook to use Azure seamlessly. 1. First either create a new repo from the template, or create a fork of this repo. 1. Clone your new repository locally, or on an Azure Data Science Virtual Machine. ```bash git clone https://github.com/[your_github_username_or_org]/[your_project].git ``` 1. Enter the local repository: ```bash cd [your_project] ``` 1. Copy `project_sample.yml` to a new file, `project.yml`, you can fill in the fields now, or use the UI when running from the notebook. This will keep secrets out of the source code, and this file will be ignored by git. ```bash cp project_sample.yml project.yml ``` 1. Create the Python ai-architecture-template virtual environment using the environment.yml: ```bash conda env create -f environment.yml ``` 1. Activate the virtual environment: ```bash source activate ai-architecture-template ``` The remaining steps should be done in this virtual environment. 1. Login to Azure: ```bash az login ``` You can verify that you are logged in to your subscription by executing the command: ```bash az account show -o table ``` 1. If you have more than one Azure subscription, select it: ```bash az account set --subscription ``` 1. Start the Jupyter notebook server: ```bash jupyter notebook ``` # Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com. When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repositories using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments. # Related projects [Microsoft AI Github](https://github.com/microsoft/ai) Find other Best Practice projects, and Azure AI Designed patterns in our central repository.