# langchain-objectbox **Repository Path**: mirrors_objectbox/langchain-objectbox ## Basic Information - **Project Name**: langchain-objectbox - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: dev - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-11-28 - **Last Updated**: 2026-01-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # langchain-objectbox ## About This package contains the [ObjectBox](https://objectbox.io) integrations for [LangChain](https://www.langchain.com). This page will show you how to use the ObjectBox vector store in your LangChain projects. ## Getting Started Install the `langchain-objectbox` package from PyPI via pip. ``` pip install langchain-objectbox ``` In Python import the ObjectBox vector store which is available under fully qualified class path `langchain_objectbox.vectorstores.ObjectBox`, e.g.: ``` from langchain_objectbox.vectorstores import ObjectBox ``` Create an ObjectBox VectorStore using e.g. one of the `from_` class methods e.g. `from_texts` class method. **NOTE:** Ensure to set argument `embedding_dimensions` along with the dimensions used in your embeddings model. ``` obx_vectorstore = ObjectBox.from_texts(texts, embeddings, embedding_dimensions=768) ``` ## Examples: How to use ObjectBox in LangChain Note: we have also fully runnable examples in the `examples` directory. ### Example 1: A *very* simple example using DeterministicFakeEmbedding This small example demonstrates how to create an ObjectBox vector store with a list of texts and then perform a similarity search. Note that the `DeterministicFakeEmbedding` is a not a real embedding model and thus does not match semantically. ```python from langchain_core.embeddings.fake import DeterministicFakeEmbedding from langchain_objectbox.vectorstores import ObjectBox texts = ["foo", "bar", "baz"] obx_vectorstore = ObjectBox.from_texts( texts, DeterministicFakeEmbedding(size=10), embedding_dimensions=10, ) result = obx_vectorstore.similarity_search("foo", k=1) print(result) ``` ### Example 2: A more complex example using web retrieval chain Prerequisites: - Ollama as local LLM: See installation notes on https://python.langchain.com/docs/get_started/quickstart - ``pip install langchain bs4`` ```python from langchain_objectbox.vectorstores import ObjectBox from langchain_community.llms import Ollama llm = Ollama(model="llama2") from langchain_community.document_loaders import WebBaseLoader loader = WebBaseLoader("https://docs.smith.langchain.com/user_guide") docs = loader.load() from langchain_community.embeddings import OllamaEmbeddings embeddings = OllamaEmbeddings() from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts.chat import ChatPromptTemplate prompt = ChatPromptTemplate.from_template("""Answer the following question based only on the provided context: {context} Question: {input}""") from langchain_text_splitters import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter() documents = text_splitter.split_documents(docs) vector = ObjectBox.from_documents(documents, embeddings, embedding_dimensions=768) document_chain = create_stuff_documents_chain(llm, prompt) from langchain_core.documents import Document from langchain.chains import create_retrieval_chain retriever = vector.as_retriever() retrieval_chain = create_retrieval_chain(retriever, document_chain) response = retrieval_chain.invoke({"input": "how can langsmith help with testing?"}) print(response["answer"]) ``` ## Developing If you are interested in developing the `langchain-objectbox` package itself (just "just" using it), you can check the "developer-notes.md" page. ## LICENSE ``` MIT License Copyright (c) 2024 ObjectBox, Ltd. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ```