# mlsh **Repository Path**: mirrors_openai/mlsh ## Basic Information - **Project Name**: mlsh - **Description**: Code for the paper "Meta-Learning Shared Hierarchies" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-10 - **Last Updated**: 2026-02-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README **Status:** Archive (code is provided as-is, no updates expected) # Meta-Learning Shared Hierarchies Code for [Meta-Learning Shared Hierarchies](https://s3-us-west-2.amazonaws.com/openai-assets/MLSH/mlsh_paper.pdf). ##### Installation ``` Add to your .bash_profile (replace ... with path to directory): export PYTHONPATH=$PYTHONPATH:/.../mlsh/gym; export PYTHONPATH=$PYTHONPATH:/.../mlsh/rl-algs; Install MovementBandits environments: cd test_envs pip install -e . ``` ##### Running Experiments ``` python main.py --task AntBandits-v1 --num_subs 2 --macro_duration 1000 --num_rollouts 2000 --warmup_time 20 --train_time 30 --replay False AntAgent ``` Once you've trained your agent, view it by running: ``` python main.py [...] --replay True --continue_iter [your iteration] AntAgent ``` The MLSH script works on any Gym environment that implements the randomizeCorrect() function. See the envs/ folder for examples of such environments. To run on multiple cores: ``` mpirun -np 12 python main.py ... ```