# tesseract-decoder
**Repository Path**: mirrors_quantumlib/tesseract-decoder
## Basic Information
- **Project Name**: tesseract-decoder
- **Description**: Search-based decoder for quantum error correction (QEC) written in C++ and Python.
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-03-14
- **Last Updated**: 2026-02-07
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# [Tesseract Decoder](https://quantumlib.github.io/tesseract-decoder)
A Search-Based Decoder for Quantum Error Correction.
[](https://github.com/quantumlib/tesseract-decoder/blob/main/LICENSE)

[Installation](#installation) –
[Usage](#usage) –
[Python Interface](#python-interface) –
[Paper](https://arxiv.org/pdf/2503.10988) –
[Help](#help) –
[Citation](#citation) –
[Contact](#contact)
Tesseract is a Most Likely Error decoder designed for Low Density Parity Check (LDPC) quantum
error-correcting codes. It applies pruning heuristics and manifold orientation techniques during a
search over the error subsets to identify the most likely error configuration consistent with the
observed syndrome. Tesseract achieves significant speed improvements over traditional integer
programming-based decoders while maintaining comparable accuracy at moderate physical error rates.
We tested the Tesseract decoder for:
* Surface codes
* Color codes
* Bivariate-bicycle codes
* Transversal CNOT protocols for surface codes
## Features
* **A\* search:** deploys [A\* search](https://en.wikipedia.org/wiki/A*_search_algorithm) while
running a [Dijkstra algorithm](https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm) with early
stop for high performance.
* **Stim and DEM Support:** processes [Stim](https://github.com/quantumlib/stim) circuit files and
[Detector Error Model
(DEM)](https://github.com/quantumlib/Stim/blob/main/doc/file_format_dem_detector_error_model.md)
files with arbitrary error models. Zero-probability error instructions are
automatically removed when a DEM is loaded.
* **Parallel Decoding:** uses multithreading to accelerate the decoding process, making it
suitable for large-scale simulations.
* **Efficient Beam Search:** implements a [beam search](https://en.wikipedia.org/wiki/Beam_search)
algorithm to minimize decoding cost and enhance efficiency.
**Sampling and Shot Range Processing:** supports sampling shots from circuits. When a detection
error model is provided without an accompanying circuit, Tesseract requires detection events from
files using `--in`. The decoder can also process specific shot ranges for flexible experiment
setups.
* **Detailed Statistics:** provides comprehensive statistics output, including shot counts, error
counts, and processing times.
* **Heuristics**: includes flexible heuristic options: `--beam`, `--det-penalty`,
`--beam-climbing`, `--no-revisit-dets`, `--at-most-two-errors-per-detector`, and `--pqlimit` to
improve performance while maintaining a low logical error rate. To learn more about these
options, use `./bazel-bin/src/tesseract --help`
* **Visualization tool:** open the [viz directory](viz/) in your browser to view decoding results. See [viz/README.md](viz/README.md) for instructions on generating the visualization JSON.
## Installation
Tesseract relies on the following external libraries:
* [argparse](https://github.com/p-ranav/argparse): For command-line argument parsing.
* [nlohmann/json](https://github.com/nlohmann/json): For JSON handling (used for statistics output).
* [Stim](https://github.com/quantumlib/stim): For quantum circuit simulation and error model
handling.
### Build Instructions
Tesseract uses [Bazel](https://bazel.build/) as its build system. To build the decoder:
```bash
bazel build src:all
```
## Running Tests
Unit tests are executed with Bazel. Run the quick test suite using:
```bash
bazel test //src:all
```
By default the tests use reduced parameters and finish in under 30 seconds.
To run a more exhaustive suite with additional shots and larger distances, set:
```bash
TESSERACT_LONG_TESTS=1 bazel test //src:all
```
## Usage
The file `tesseract_main.cc` provides the main entry point for Tesseract Decoder. It can decode
error events from Stim circuits, DEM files, and pre-existing detection event files.
Basic Usage:
```bash
./tesseract --circuit CIRCUIT_FILE.stim --sample-num-shots N --print-stats
```
To decode pre-generated detection events, provide the input file using
`--in SHOTS_FILE --in-format FORMAT`.
Example with Advanced Options:
```bash
./tesseract \
--pqlimit 1000000 \
--at-most-two-errors-per-detector \
--det-order-seed 232852747 \
--circuit circuit_file.stim \
--sample-seed 232856747 \
--sample-num-shots 10000 \
--threads 32 \
--print-stats \
--beam 23 \
--num-det-orders 1 \
--shot-range-begin 582 \
--shot-range-end 583
```
### Example Usage
Sampling Shots from a Circuit:
```bash
./tesseract --circuit surface_code.stim --sample-num-shots 1000 --out predictions.01 --out-format 01
```
Using a Detection Event File:
```bash
./tesseract --in events.01 --in-format 01 --dem surface_code.dem --out decoded.txt
```
Using a Detection Event File and Observable Flips:
```bash
./tesseract --in events.01 --in-format 01 --obs_in obs.01 --obs-in-format 01 --dem surface_code.dem --out decoded.txt
```
Tesseract supports reading and writing from all of Stim's standard [output
formats](https://github.com/quantumlib/Stim/blob/main/doc/result_formats.md).
### Performance Optimization
Here are some tips for improving performance:
* *Parallelism over shots*: increase `--threads` to leverage multicore processors for faster
decoding.
* *Beam Search*: use `--beam` to control the trade-off between accuracy and speed. Smaller beam sizes
result in faster decoding but potentially lower accuracy.
* *Beam Climbing*: enable `--beam-climbing` for enhanced cost-based decoding.
* *At most two errors per detector*: enable `--at-most-two-errors-per-detector` to improve
performance.
* *Priority Queue limit*: use `--pqlimit` to limit the size of the priority queue.
### Output Formats
* *Observable flips output*: predictions of logical errors.
* *DEM usage frequency output*: if `--dem-out` is specified, outputs estimated error frequencies.
* *Statistics output*: includes number of shots, errors, low confidence shots, and processing time.
## Python Interface
[Full Python wrapper documentation](src/py/README.md)
This repository contains the C++ implementation of the Tesseract quantum error correction decoder, along with a Python wrapper. The Python wrapper/interface exposes the decoding algorithms and helper utilities, allowing Python users to leverage this high-performance decoding algorithm.
For installation:
```bash
pip install tesseract-decoder
```
The following example demonstrates how to create and use the Tesseract decoder using the Python interface.
```python
from tesseract_decoder import tesseract
import stim
import numpy as np
# 1. Define a detector error model (DEM)
dem = stim.DetectorErrorModel("""
error(0.1) D0 D1 L0
error(0.2) D1 D2 L1
detector(0, 0, 0) D0
detector(1, 0, 0) D1
detector(2, 0, 0) D2
""")
# 2. Create the decoder configuration
config = tesseract.TesseractConfig(dem=dem, det_beam=50)
# 3. Create a decoder instance
decoder = config.compile_decoder()
# 4. Simulate detector outcomes
syndrome = np.array([0, 1, 1], dtype=bool)
# 5a. Decode to observables
flipped_observables = decoder.decode(syndrome)
print(f"Flipped observables: {flipped_observables}")
# 5b. Alternatively, decode to errors
decoder.decode_to_errors(syndrome)
predicted_errors = decoder.predicted_errors_buffer
# Indices of predicted errors
print(f"Predicted errors indices: {predicted_errors}")
# Print properties of predicted errors
for i in predicted_errors:
print(f" {i}: {decoder.errors[i]}")
```
## Using Tesseract with Sinter
Tesseract can be easily integrated into [Sinter](https://github.com/quantumlib/Stim/tree/main/glue/sample) workflows. Sinter is a tool for running and organizing quantum error correction simulations.
Here's an example of how to use Tesseract as a decoder for multiple Sinter tasks:
```python
import stim
import sinter
from tesseract_decoder import make_tesseract_sinter_decoders_dict, TesseractSinterDecoder
import tesseract_decoder
if __name__ == "__main__":
# Define a list of Sinter task(s) with different circuits/decoders.
tasks = []
# Depolarizing noise probability.
p = 0.005
# These are the sensible defaults given by make_tesseract_sinter_decoders_dict().
# Note that `tesseract-short-beam` and `tesseract-long-beam` are the two sets of parameters used in the [Tesseract paper](https://arxiv.org/pdf/2503.10988).
decoders = ['tesseract', 'tesseract-long-beam', 'tesseract-short-beam']
decoder_dict = make_tesseract_sinter_decoders_dict()
# You can also make your own custom Tesseract Decoder to-be-used with Sinter.
decoders.append('custom-tesseract-decoder')
decoder_dict['custom-tesseract-decoder'] = TesseractSinterDecoder(
det_beam=10,
beam_climbing=True,
no_revisit_dets=True,
merge_errors=True,
pqlimit=1_000,
num_det_orders=5,
det_order_method=tesseract_decoder.utils.DetOrder.DetIndex,
seed=2384753,
)
for distance in [3, 5, 7]:
for decoder in decoders:
circuit = stim.Circuit.generated(
"surface_code:rotated_memory_x",
distance=distance,
rounds=3,
after_clifford_depolarization=p
)
tasks.append(sinter.Task(
circuit=circuit,
decoder=decoder,
json_metadata={"d": distance, "decoder": decoder},
))
# Collect decoding outcomes per task from Sinter.
results = sinter.collect(
num_workers=8,
tasks=tasks,
max_shots=10_000,
decoders=decoders,
custom_decoders=decoder_dict,
print_progress=True,
)
# Print samples as CSV data.
print(sinter.CSV_HEADER)
for sample in results:
print(sample.to_csv_line())
```
should get something like:
```
shots, errors, discards, seconds,decoder,strong_id,json_metadata,custom_counts
10000, 42, 0, 0.071,tesseract,1b3fce6286e438f38c00c8f6a5005947373515ab08e6446a7dd9ecdbef12d4cc,"{""d"":3,""decoder"":""tesseract""}",
10000, 49, 0, 0.546,custom-tesseract-decoder,7b082bec7541be858e239d7828a432e329cd448356bbdf051b8b8aa76c86625a,"{""d"":3,""decoder"":""custom-tesseract-decoder""}",
10000, 13, 0, 7.64,tesseract-long-beam,217a3542f56319924576658a6da7081ea2833f5167cf6d77fbc7071548e386a9,"{""d"":5,""decoder"":""tesseract-long-beam""}",
10000, 42, 0, 0.743,tesseract-short-beam,cf4a4b0ce0e4c7beec1171f58eddffe403ed7359db5016fca2e16174ea577057,"{""d"":3,""decoder"":""tesseract-short-beam""}",
10000, 34, 0, 0.924,tesseract-long-beam,8cfa0f2e4061629e13bc98fe213285dc00eb90f21bba36e08c76bcdf213a1c09,"{""d"":3,""decoder"":""tesseract-long-beam""}",
10000, 10, 0, 0.439,tesseract,8274ea5ffec15d6e71faed5ee1057cdd7e497cbaee4c6109784f8a74669d7f96,"{""d"":5,""decoder"":""tesseract""}",
10000, 8, 0, 3.93,custom-tesseract-decoder,8e4f5ab5dde00fec74127eea39ea52d5a98ae6ccfc277b5d9be450f78acc1c45,"{""d"":5,""decoder"":""custom-tesseract-decoder""}",
10000, 10, 0, 5.74,tesseract-short-beam,bf696535d62a25720c3a0c624ec5624002efe3f6cb0468963eee702efb48abc1,"{""d"":5,""decoder"":""tesseract-short-beam""}",
10000, 5, 0, 1.27,tesseract,3f94c61f1503844df6cf0d200b74ac01bfbc5e29e70cedbfc2faad67047e7887,"{""d"":7,""decoder"":""tesseract""}",
10000, 4, 0, 25.0,tesseract-long-beam,4d510f0acf511e24a833a93c956b683346696d8086866fadc73063fb09014c23,"{""d"":7,""decoder"":""tesseract-long-beam""}",
10000, 1, 0, 18.6,tesseract-short-beam,75782ce4593022fcedad4c73104711f05c9c635db92869531f78da336945b121,"{""d"":7,""decoder"":""tesseract-short-beam""}",
10000, 4, 0, 11.6,custom-tesseract-decoder,48f256a28fff47c58af7bffdf98fdee1d41a721751ee965c5d3c5712ac795dc8,"{""d"":7,""decoder"":""custom-tesseract-decoder""}",
```
This example runs simulations for a repetition code with different distances [3, 5, 7] with different Tesseract default decoders.
Sinter can also be used at the command line. Here is an example of this using Tesseract:
```bash
sinter collect \
--circuits "example_circuit.stim" \
--decoders tesseract \
--custom_decoders_module_function "tesseract_decoder:make_tesseract_sinter_decoders_dict" \
--max_shots 100_000 \
--max_errors 100
--processes auto \
--save_resume_filepath "stats.csv" \
```
Sinter efficiently manages the execution of these tasks, and Tesseract is used for decoding. For more usage examples, see the tests in `src/py/tesseract_sinter_compat_test.py`.
## Good Starting Points for Tesseract Configurations:
The [Tesseract paper](https://arxiv.org/pdf/2503.10988) recommends two setup for starting your exploration with tesseract:
(1) Long-beam setup:
```
tesseract_config = tesseract.TesseractConfig(
dem=dem,
pqlimit=1_000_000,
det_beam=20,
beam_climbing=True,
det_orders=tesseract_decoder.utils.build_det_orders(
dem=dem,
num_det_orders=21,
method=tesseract_decoder.utils.DetOrder.DetIndex,
),
no_revisit_dets=True,
)
```
(2) Short-beam setup:
```
tesseract_config = tesseract.TesseractConfig(
dem=dem,
pqlimit=200_000,
det_beam=15,
beam_climbing=True,
det_orders=tesseract_decoder.utils.build_det_orders(
dem=dem,
num_det_orders=16,
method=tesseract_decoder.utils.DetOrder.DetIndex,
),
no_revisit_dets=True,
)
```
For `det_order`, you can use two other options of `DetIndex` and `DetCoordinate` as well.
These values balance decoding speed and accuracy across the benchmarks reported in the paper and can be adjusted for specific use cases.
## Help
* Do you have a feature request or want to report a bug? [Open an issue on
GitHub] to report it!
* Do you have a code contribution? Read our [contribution guidelines], then
open a [pull request]!
[Open an issue on GitHub]: https://github.com/quantumlib/tesseract-decoder/issues/new/choose
[contribution guidelines]: https://github.com/quantumlib/tesseract-decoder/blob/main/CONTRIBUTING.md
[pull request]: https://help.github.com/articles/about-pull-requests
We are committed to providing a friendly, safe, and welcoming environment for
all. Please read and respect our [Code of Conduct](CODE_OF_CONDUCT.md).
## Citation
When publishing articles or otherwise writing about Tesseract Decoder, please
cite the following:
```latex
@misc{beni2025tesseractdecoder,
title={Tesseract: A Search-Based Decoder for Quantum Error Correction},
author = {Aghababaie Beni, Laleh and Higgott, Oscar and Shutty, Noah},
year={2025},
eprint={2503.10988},
archivePrefix={arXiv},
primaryClass={quant-ph},
doi = {10.48550/arXiv.2503.10988},
url={https://arxiv.org/abs/2503.10988},
}
```
## Contact
For any questions or concerns not addressed here, please email .
## Disclaimer
Tesseract Decoder is not an officially supported Google product. This project is not eligible for
the [Google Open Source Software Vulnerability Rewards
Program](https://bughunters.google.com/open-source-security).
Copyright 2025 Google LLC.