# sdk-python **Repository Path**: mirrors_trending/sdk-python ## Basic Information - **Project Name**: sdk-python - **Description**: A model-driven approach to building AI agents in just a few lines of code. - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-05-29 - **Last Updated**: 2026-02-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
Strands Agents

Strands Agents

A model-driven approach to building AI agents in just a few lines of code.

GitHub commit activity GitHub open issues GitHub open pull requests License PyPI version Python versions

DocumentationSamplesPython SDKToolsAgent BuilderMCP Server

Strands Agents is a simple yet powerful SDK that takes a model-driven approach to building and running AI agents. From simple conversational assistants to complex autonomous workflows, from local development to production deployment, Strands Agents scales with your needs. ## Feature Overview - **Lightweight & Flexible**: Simple agent loop that just works and is fully customizable - **Model Agnostic**: Support for Amazon Bedrock, Anthropic, Gemini, LiteLLM, Llama, Ollama, OpenAI, Writer, and custom providers - **Advanced Capabilities**: Multi-agent systems, autonomous agents, and streaming support - **Built-in MCP**: Native support for Model Context Protocol (MCP) servers, enabling access to thousands of pre-built tools ## Quick Start ```bash # Install Strands Agents pip install strands-agents strands-agents-tools ``` ```python from strands import Agent from strands_tools import calculator agent = Agent(tools=[calculator]) agent("What is the square root of 1764") ``` > **Note**: For the default Amazon Bedrock model provider, you'll need AWS credentials configured and model access enabled for Claude 4 Sonnet in the us-west-2 region. See the [Quickstart Guide](https://strandsagents.com/) for details on configuring other model providers. ## Installation Ensure you have Python 3.10+ installed, then: ```bash # Create and activate virtual environment python -m venv .venv source .venv/bin/activate # On Windows use: .venv\Scripts\activate # Install Strands and tools pip install strands-agents strands-agents-tools ``` ## Features at a Glance ### Python-Based Tools Easily build tools using Python decorators: ```python from strands import Agent, tool @tool def word_count(text: str) -> int: """Count words in text. This docstring is used by the LLM to understand the tool's purpose. """ return len(text.split()) agent = Agent(tools=[word_count]) response = agent("How many words are in this sentence?") ``` **Hot Reloading from Directory:** Enable automatic tool loading and reloading from the `./tools/` directory: ```python from strands import Agent # Agent will watch ./tools/ directory for changes agent = Agent(load_tools_from_directory=True) response = agent("Use any tools you find in the tools directory") ``` ### MCP Support Seamlessly integrate Model Context Protocol (MCP) servers: ```python from strands import Agent from strands.tools.mcp import MCPClient from mcp import stdio_client, StdioServerParameters aws_docs_client = MCPClient( lambda: stdio_client(StdioServerParameters(command="uvx", args=["awslabs.aws-documentation-mcp-server@latest"])) ) with aws_docs_client: agent = Agent(tools=aws_docs_client.list_tools_sync()) response = agent("Tell me about Amazon Bedrock and how to use it with Python") ``` ### Multiple Model Providers Support for various model providers: ```python from strands import Agent from strands.models import BedrockModel from strands.models.ollama import OllamaModel from strands.models.llamaapi import LlamaAPIModel from strands.models.gemini import GeminiModel from strands.models.llamacpp import LlamaCppModel # Bedrock bedrock_model = BedrockModel( model_id="us.amazon.nova-pro-v1:0", temperature=0.3, streaming=True, # Enable/disable streaming ) agent = Agent(model=bedrock_model) agent("Tell me about Agentic AI") # Google Gemini gemini_model = GeminiModel( client_args={ "api_key": "your_gemini_api_key", }, model_id="gemini-2.5-flash", params={"temperature": 0.7} ) agent = Agent(model=gemini_model) agent("Tell me about Agentic AI") # Ollama ollama_model = OllamaModel( host="http://localhost:11434", model_id="llama3" ) agent = Agent(model=ollama_model) agent("Tell me about Agentic AI") # Llama API llama_model = LlamaAPIModel( model_id="Llama-4-Maverick-17B-128E-Instruct-FP8", ) agent = Agent(model=llama_model) response = agent("Tell me about Agentic AI") ``` Built-in providers: - [Amazon Bedrock](https://strandsagents.com/latest/user-guide/concepts/model-providers/amazon-bedrock/) - [Anthropic](https://strandsagents.com/latest/user-guide/concepts/model-providers/anthropic/) - [Gemini](https://strandsagents.com/latest/user-guide/concepts/model-providers/gemini/) - [Cohere](https://strandsagents.com/latest/user-guide/concepts/model-providers/cohere/) - [LiteLLM](https://strandsagents.com/latest/user-guide/concepts/model-providers/litellm/) - [llama.cpp](https://strandsagents.com/latest/user-guide/concepts/model-providers/llamacpp/) - [LlamaAPI](https://strandsagents.com/latest/user-guide/concepts/model-providers/llamaapi/) - [MistralAI](https://strandsagents.com/latest/user-guide/concepts/model-providers/mistral/) - [Ollama](https://strandsagents.com/latest/user-guide/concepts/model-providers/ollama/) - [OpenAI](https://strandsagents.com/latest/user-guide/concepts/model-providers/openai/) - [SageMaker](https://strandsagents.com/latest/user-guide/concepts/model-providers/sagemaker/) - [Writer](https://strandsagents.com/latest/user-guide/concepts/model-providers/writer/) Custom providers can be implemented using [Custom Providers](https://strandsagents.com/latest/user-guide/concepts/model-providers/custom_model_provider/) ### Example tools Strands offers an optional strands-agents-tools package with pre-built tools for quick experimentation: ```python from strands import Agent from strands_tools import calculator agent = Agent(tools=[calculator]) agent("What is the square root of 1764") ``` It's also available on GitHub via [strands-agents/tools](https://github.com/strands-agents/tools). ### Bidirectional Streaming > **⚠️ Experimental Feature**: Bidirectional streaming is currently in experimental status. APIs may change in future releases as we refine the feature based on user feedback and evolving model capabilities. Build real-time voice and audio conversations with persistent streaming connections. Unlike traditional request-response patterns, bidirectional streaming maintains long-running conversations where users can interrupt, provide continuous input, and receive real-time audio responses. Get started with your first BidiAgent by following the [Quickstart](https://strandsagents.com/latest/documentation/docs/user-guide/concepts/experimental/bidirectional-streaming/quickstart) guide. **Supported Model Providers:** - Amazon Nova Sonic (v1, v2) - Google Gemini Live - OpenAI Realtime API **Quick Example:** ```python import asyncio from strands.experimental.bidi import BidiAgent from strands.experimental.bidi.models import BidiNovaSonicModel from strands.experimental.bidi.io import BidiAudioIO, BidiTextIO from strands.experimental.bidi.tools import stop_conversation from strands_tools import calculator async def main(): # Create bidirectional agent with Nova Sonic v2 model = BidiNovaSonicModel() agent = BidiAgent(model=model, tools=[calculator, stop_conversation]) # Setup audio and text I/O audio_io = BidiAudioIO() text_io = BidiTextIO() # Run with real-time audio streaming # Say "stop conversation" to gracefully end the conversation await agent.run( inputs=[audio_io.input()], outputs=[audio_io.output(), text_io.output()] ) if __name__ == "__main__": asyncio.run(main()) ``` **Configuration Options:** ```python from strands.experimental.bidi.models import BidiNovaSonicModel # Configure audio settings and turn detection (v2 only) model = BidiNovaSonicModel( provider_config={ "audio": { "input_rate": 16000, "output_rate": 16000, "voice": "matthew" }, "turn_detection": { "endpointingSensitivity": "MEDIUM" # HIGH, MEDIUM, or LOW }, "inference": { "max_tokens": 2048, "temperature": 0.7 } } ) # Configure I/O devices audio_io = BidiAudioIO( input_device_index=0, # Specific microphone output_device_index=1, # Specific speaker input_buffer_size=10, output_buffer_size=10 ) # Text input mode (type messages instead of speaking) text_io = BidiTextIO() await agent.run( inputs=[text_io.input()], # Use text input outputs=[audio_io.output(), text_io.output()] ) # Multi-modal: Both audio and text input await agent.run( inputs=[audio_io.input(), text_io.input()], # Speak OR type outputs=[audio_io.output(), text_io.output()] ) ``` ## Documentation For detailed guidance & examples, explore our documentation: - [User Guide](https://strandsagents.com/) - [Quick Start Guide](https://strandsagents.com/latest/user-guide/quickstart/) - [Agent Loop](https://strandsagents.com/latest/user-guide/concepts/agents/agent-loop/) - [Examples](https://strandsagents.com/latest/examples/) - [API Reference](https://strandsagents.com/latest/api-reference/agent/) - [Production & Deployment Guide](https://strandsagents.com/latest/user-guide/deploy/operating-agents-in-production/) ## Contributing ❤️ We welcome contributions! See our [Contributing Guide](CONTRIBUTING.md) for details on: - Reporting bugs & features - Development setup - Contributing via Pull Requests - Code of Conduct - Reporting of security issues ## License This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details. ## Security See [CONTRIBUTING](CONTRIBUTING.md#security-issue-notifications) for more information.