# faster-whisper-medium.en **Repository Path**: modelee/faster-whisper-medium.en ## Basic Information - **Project Name**: faster-whisper-medium.en - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 3 - **Forks**: 0 - **Created**: 2023-05-23 - **Last Updated**: 2025-05-22 ## Categories & Tags **Categories**: llm **Tags**: None ## README --- language: - en tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper medium.en model for CTranslate2 This repository contains the conversion of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper). ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("medium.en") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model openai/whisper-medium.en --output_dir faster-whisper-medium.en \ --copy_files tokenizer.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-medium.en).**